Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Toward the next generation of high-efficiency plastic solar cells

Abstract:
Journal of the American Chemical Society

Toward the next generation of high-efficiency plastic solar cells

Santa Barbara, CA | Posted on March 12th, 2008

Researchers in the United States and Austria report an advance toward the next generation of plastic solar cells, which are widely heralded as a low cost, environmentally-friendly alternative to inorganic solar cells for meeting rising energy demands. Their study is scheduled for the March 19 issue of ACS' Journal of the American Chemical Society, a weekly publication.

Alan J. Heeger and colleagues point out that plastic solar cells, fabricated from bulk heterojunction materials comprising semiconducting polymers and fullerenes, have already demonstrated promising performance. However, researchers do not understand how to control the nano-scale morphology and are looking for ways to optimize the solar cell performance for practical use. Heeger, co-recipient of the Nobel Prize in Chemistry in 2000 for his pioneering research on conducting polymers, is widely recognized for his ongoing efforts to improve solar cell efficiencies.

In the new study, Heeger and colleagues found that adding a class of chemicals called alkanedithiols as processing additives improves both the morphology and the solar cell performance.They showed that by utilizing alkanedithiols as processing additives, the efficiency of the plastic solar cells increased from 3.4 percent to 5.1 percent, among the highest efficiencies achieved to date for this type of solar cell. "These data provide a better understanding of correlation between the nano-scale morphology of the bulk heterojunction film and the solar cell performance," the report states.

####

For more information, please click here

Contacts:
Alan J. Heeger, Ph.D.
University of California at Santa Barbara
Santa Barbara, California 93106
Phone: 805-983-3184
Fax: 805-893-4755

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Discoveries

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project