Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano-scale structures made from DNA: study

Abstract:
Best known as the blueprint for life, DNA is also a marvel of architecture that can be used to build 3-D structures measured in billionths of a metre, according to a study released Wednesday.

Nano-scale structures made from DNA: study

PARIS, France | Posted on March 12th, 2008

A team of scientists in the United States has shown in experiments how to construct complex, spherical objects with tiny strings of DNA that assemble by themselves.

DNA nanotechnology uses the building blocks of living organisms not as a repository for biological data, but as a structural material instead.

These molecular-scale biomaterials hold tremendous promise in fields ranging from robotics to electronics to computation, scientists say.

One of the ultimate goals is the self-assembling biochips for nano-computers, according to New York University chemist Nadrian Seeman, a leading expert on on DNA-based technology.

Whether synthetic or natural, DNA strands often display properties that cannot be duplicated in conventional organic or inorganic chemistry.

Such biomaterials have the added advantage of being a renewable resource and, by definition, biodegradable.

The DNA double helix structure consists of two intertwined spirals of sugar and phosphate molecules linked by pairs of nucleotides, the basic building blocks of all life.

In nature, the double helix is about two nanometres wide, and varies in length depending on the organism whose genetic codes it contains. In humans, the DNA ladder consists of some three billion "rungs," or base pairs, that would stretch out nearly a meter (yard) in length if unfolded.

Some two-dimensional DNA nanostructures have already been made by coaxing DNA molecules to interact and lock together in such a way as to produce a desired pattern.

But larger and three-dimensional forms have been harder to make using existing methods because of the need to manipulate hundreds of unique DNA strands.

A team of researchers led by Chengde Mao of Perdue University in Illinois overcame this problem by programming the DNA to first fold into a basic, "pre-fab" structural unit shaped like a three-pointed star.

This made it easier for these uniform units to coalesce into five- or 12-sided geometric forms, or even "buckyballs", molecules with 32 sides composed of 20 hexagons and 12 pentagons.

"We expect that our assembly strategy can be adapted to allow the fabrication of a range of relatively complex three-dimensional structures," the researchers concluded.

####

Copyright © New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Discoveries

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Announcements

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Nanobiotechnology

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE