Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano-scale structures made from DNA: study

Abstract:
Best known as the blueprint for life, DNA is also a marvel of architecture that can be used to build 3-D structures measured in billionths of a metre, according to a study released Wednesday.

Nano-scale structures made from DNA: study

PARIS, France | Posted on March 12th, 2008

A team of scientists in the United States has shown in experiments how to construct complex, spherical objects with tiny strings of DNA that assemble by themselves.

DNA nanotechnology uses the building blocks of living organisms not as a repository for biological data, but as a structural material instead.

These molecular-scale biomaterials hold tremendous promise in fields ranging from robotics to electronics to computation, scientists say.

One of the ultimate goals is the self-assembling biochips for nano-computers, according to New York University chemist Nadrian Seeman, a leading expert on on DNA-based technology.

Whether synthetic or natural, DNA strands often display properties that cannot be duplicated in conventional organic or inorganic chemistry.

Such biomaterials have the added advantage of being a renewable resource and, by definition, biodegradable.

The DNA double helix structure consists of two intertwined spirals of sugar and phosphate molecules linked by pairs of nucleotides, the basic building blocks of all life.

In nature, the double helix is about two nanometres wide, and varies in length depending on the organism whose genetic codes it contains. In humans, the DNA ladder consists of some three billion "rungs," or base pairs, that would stretch out nearly a meter (yard) in length if unfolded.

Some two-dimensional DNA nanostructures have already been made by coaxing DNA molecules to interact and lock together in such a way as to produce a desired pattern.

But larger and three-dimensional forms have been harder to make using existing methods because of the need to manipulate hundreds of unique DNA strands.

A team of researchers led by Chengde Mao of Perdue University in Illinois overcame this problem by programming the DNA to first fold into a basic, "pre-fab" structural unit shaped like a three-pointed star.

This made it easier for these uniform units to coalesce into five- or 12-sided geometric forms, or even "buckyballs", molecules with 32 sides composed of 20 hexagons and 12 pentagons.

"We expect that our assembly strategy can be adapted to allow the fabrication of a range of relatively complex three-dimensional structures," the researchers concluded.

####

Copyright © New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Leti Breakthroughs Point Way to Significant Improvements in SoC Memories December 6th, 2017

Discoveries

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Announcements

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Nanobiotechnology

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy — Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 — December 6th, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Drug-delivering nanoparticles seek and destroy elusive cancer stem cells November 28th, 2017

Graphene oxide making any material suitable to create biosensors: Scientists from Tomsk Polytechnic University have developed a new tool for biomedical research focused on single-cell investigation November 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project