Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > Nano-scale structures made from DNA: study

Best known as the blueprint for life, DNA is also a marvel of architecture that can be used to build 3-D structures measured in billionths of a metre, according to a study released Wednesday.

Nano-scale structures made from DNA: study

PARIS, France | Posted on March 12th, 2008

A team of scientists in the United States has shown in experiments how to construct complex, spherical objects with tiny strings of DNA that assemble by themselves.

DNA nanotechnology uses the building blocks of living organisms not as a repository for biological data, but as a structural material instead.

These molecular-scale biomaterials hold tremendous promise in fields ranging from robotics to electronics to computation, scientists say.

One of the ultimate goals is the self-assembling biochips for nano-computers, according to New York University chemist Nadrian Seeman, a leading expert on on DNA-based technology.

Whether synthetic or natural, DNA strands often display properties that cannot be duplicated in conventional organic or inorganic chemistry.

Such biomaterials have the added advantage of being a renewable resource and, by definition, biodegradable.

The DNA double helix structure consists of two intertwined spirals of sugar and phosphate molecules linked by pairs of nucleotides, the basic building blocks of all life.

In nature, the double helix is about two nanometres wide, and varies in length depending on the organism whose genetic codes it contains. In humans, the DNA ladder consists of some three billion "rungs," or base pairs, that would stretch out nearly a meter (yard) in length if unfolded.

Some two-dimensional DNA nanostructures have already been made by coaxing DNA molecules to interact and lock together in such a way as to produce a desired pattern.

But larger and three-dimensional forms have been harder to make using existing methods because of the need to manipulate hundreds of unique DNA strands.

A team of researchers led by Chengde Mao of Perdue University in Illinois overcame this problem by programming the DNA to first fold into a basic, "pre-fab" structural unit shaped like a three-pointed star.

This made it easier for these uniform units to coalesce into five- or 12-sided geometric forms, or even "buckyballs", molecules with 32 sides composed of 20 hexagons and 12 pentagons.

"We expect that our assembly strategy can be adapted to allow the fabrication of a range of relatively complex three-dimensional structures," the researchers concluded.


Copyright © New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014


Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014


Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014


Nanoscale assembly line August 29th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE