Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano-scale structures made from DNA: study

Abstract:
Best known as the blueprint for life, DNA is also a marvel of architecture that can be used to build 3-D structures measured in billionths of a metre, according to a study released Wednesday.

Nano-scale structures made from DNA: study

PARIS, France | Posted on March 12th, 2008

A team of scientists in the United States has shown in experiments how to construct complex, spherical objects with tiny strings of DNA that assemble by themselves.

DNA nanotechnology uses the building blocks of living organisms not as a repository for biological data, but as a structural material instead.

These molecular-scale biomaterials hold tremendous promise in fields ranging from robotics to electronics to computation, scientists say.

One of the ultimate goals is the self-assembling biochips for nano-computers, according to New York University chemist Nadrian Seeman, a leading expert on on DNA-based technology.

Whether synthetic or natural, DNA strands often display properties that cannot be duplicated in conventional organic or inorganic chemistry.

Such biomaterials have the added advantage of being a renewable resource and, by definition, biodegradable.

The DNA double helix structure consists of two intertwined spirals of sugar and phosphate molecules linked by pairs of nucleotides, the basic building blocks of all life.

In nature, the double helix is about two nanometres wide, and varies in length depending on the organism whose genetic codes it contains. In humans, the DNA ladder consists of some three billion "rungs," or base pairs, that would stretch out nearly a meter (yard) in length if unfolded.

Some two-dimensional DNA nanostructures have already been made by coaxing DNA molecules to interact and lock together in such a way as to produce a desired pattern.

But larger and three-dimensional forms have been harder to make using existing methods because of the need to manipulate hundreds of unique DNA strands.

A team of researchers led by Chengde Mao of Perdue University in Illinois overcame this problem by programming the DNA to first fold into a basic, "pre-fab" structural unit shaped like a three-pointed star.

This made it easier for these uniform units to coalesce into five- or 12-sided geometric forms, or even "buckyballs", molecules with 32 sides composed of 20 hexagons and 12 pentagons.

"We expect that our assembly strategy can be adapted to allow the fabrication of a range of relatively complex three-dimensional structures," the researchers concluded.

####

Copyright © New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Clean Shot at Manufacturing Course…For Less April 9th, 2014

Discoveries

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scientists observe quantum superconductor-metal transition and superconducting glass: A team including MIPT physicist observed quantum superconductor-metal transition and superconducting glass April 16th, 2014

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Announcements

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Nanobiotechnology

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices April 11th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE