Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > European Consortium to push the speed limit of silicon based transistor up to 0.5 TeraHertz

Abstract:
DOTFIVE is a 3-year project targeting a 0.5 THz SiGe Heterojunction Bipolar Transistor for the future development of communication, imaging and radar applications.

European Consortium to push the speed limit of silicon based transistor up to 0.5 TeraHertz

France | Posted on March 11th, 2008

A powerful European consortium held the kick-off meeting of the EU-funded project labeled DOTFIVE and titled « Towards 0.5 TeraHertz Silicon/Germanium Heterojunction Bipolar technology (SiGe HBT)». Led by STMicroelectronics, the consortium is setting out to develop advanced silicon-based bipolar transistors with a maximum operating frequency of 0.5 THz (0.5 TeraHertz or 500 GigaHz) needed for future millimeter wave and terahertz communication, radar, imaging and sensing applications. The three-year project is worth Euros 14.75 million with Euros 9.7 million European Commission funding, making it the largest « More than Moore » nanoelectronics project under EU Framework Programme 7.

DOTFIVE is aiming to establish a leadership position for the European semiconductor industry in the area of SiGe HBTs (Silicon-Germanium Heterojunction Bipolar Transistors) for millimeter wave applications, where semiconductor manufacturers like STMicroelectronics and Infineon Technologies are involved. "With this ambitious project, Europe is getting ahead of the RF roadmap defined in ITRS, strengthening its position in an area where the whole ecosystem is already strong", said Gilles Thomas, DOTFIVE project coordinator and STMicroelectronics R&D Cooperative Programs Manager. Emerging high-volume millimeter wave applications encompass, for example, 77 GHz automotive radar applications and 60 GHz WLAN (Wireless Local Area Network) communication systems. According to U.S.market research company Strategy Analysts, the market for long-range anti-collision warning systems in cars could increase by more than 65 percent per year until 2011. In addition to these already evolving markets, DOTFIVE technology sets out to be a key enabler for silicon-based millimeter wave circuits penetrating the so-called THz gap, enabling enhanced imaging systems with applications in the security, medical and scientific area.

Today's state-of-the-art SiGe HBTs achieve roughly a maximum operating frequency of 300 GHz at room temperature. The DOTFIVE project has set its goal at 500 GHz at room temperature, a performance usually thought only possible with III-V compound semiconductor technologies. A higher operating speed can open up new application areas at very high frequencies, or can be traded in for lower power dissipation, or can help to reduce the impact of process, voltage and temperature variations at lower frequencies for better circuit reliability. SiGe HBTs are key devices for high-frequency low-power applications. Compared to III-V compound semiconductor devices, they enable high density and low-cost integration making them suitable for consumer applications.

In order to achieve their goals, the DOTFIVE partners will team up for research and development work on silicon-based transistor architectures, device modeling, and circuit design. The project involves 15 partners from industry and academia in five countries:
Infineon Technologies (Germany) and STMicroelectronics (France) are capable of manufacturing 250 GHz HBTs on silicon and willing to push up to 500 GHz by working on structural and technological improvements;
IMEC (Belgium) and IHP (Germany), two research institutes working on innovative HBT concepts, new process modules and transistor structures on silicon wafers;
XMOD Technologies (France) and GWT-TUD (Germany), two small and medium enterprises (SMEs) capable of providing needed parameter extraction and RF device modeling expertise;
and seven academic partners - the Johannes Kepler University of Linz (Austria), the ENSEIRB (Ecole Nationale Supérieure d'Electronique, Informatique et Radiocommunications de Bordeaux), the Paris-Sud University (France), the Technical University of Dresden (Germany), the Bundeswehr University in Munich ( Germany), the University of Siegen (Germany), the University of Naples (Italy) - with a strong understanding of nano-transistors, simulation, modeling and characterization of devices as well as design of RF electronic functional blocks. ALMA (France) is in charge of all administrative and financial aspects of the project.

####

Contacts:
Quentin Lebourgeois
Alma Consulting Group
55 avenue rené Cassin
69009 Lyon
FRANCE

Tel: +33625120376

Project Coordinator:
Gilles THOMAS - STMicroelectronics
Mail :
TEL : +33 4 76 92 51 11

Copyright © European Union

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanobiotix Plans to Conduct Registered Public Offering in the United States January 17th, 2019

Power stations driven by light: More efficient solar cells imitate photosynthesis January 16th, 2019

Drilling speed increased by 20% – yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Chirality in 'real-time' January 14th, 2019

Chip Technology

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Nanometrics to Participate in the 21st Annual Needham Growth Conference January 7th, 2019

Holey graphene as Holy Grail alternative to silicon chips December 28th, 2018

Study on low noise, high-performance transistors may bring innovations in electronics December 28th, 2018

Announcements

Nanobiotix Plans to Conduct Registered Public Offering in the United States January 17th, 2019

Power stations driven by light: More efficient solar cells imitate photosynthesis January 16th, 2019

Drilling speed increased by 20% – yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Chirality in 'real-time' January 14th, 2019

Alliances/Trade associations/Partnerships/Distributorships

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

CEA-Leti and Silvaco to Develop GAA SPICE Compact Models for Circuit Design and Technology Co-optimization: Project Combines CEA-Leti’s Compact Modeling Expertise And Silvaco’s Extensive Experience in SPICE Compact Model Integration and Extraction December 3rd, 2018

An important step towards completely secure quantum communication networks November 30th, 2018

Research partnerships

Chirality in 'real-time' January 14th, 2019

Ultra-sensitive sensor with gold nanoparticle array January 9th, 2019

DNA design that anyone can do: Computer program can translate a free-form 2-D drawing into a DNA structure January 4th, 2019

Revealing hidden spin: Unlocking new paths toward high-temperature superconductors: Berkeley Lab researchers uncover insights into superconductivity, leading potentially to more efficient power transmission January 4th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project