Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > European Consortium to push the speed limit of silicon based transistor up to 0.5 TeraHertz

Abstract:
DOTFIVE is a 3-year project targeting a 0.5 THz SiGe Heterojunction Bipolar Transistor for the future development of communication, imaging and radar applications.

European Consortium to push the speed limit of silicon based transistor up to 0.5 TeraHertz

France | Posted on March 11th, 2008

A powerful European consortium held the kick-off meeting of the EU-funded project labeled DOTFIVE and titled « Towards 0.5 TeraHertz Silicon/Germanium Heterojunction Bipolar technology (SiGe HBT)». Led by STMicroelectronics, the consortium is setting out to develop advanced silicon-based bipolar transistors with a maximum operating frequency of 0.5 THz (0.5 TeraHertz or 500 GigaHz) needed for future millimeter wave and terahertz communication, radar, imaging and sensing applications. The three-year project is worth Euros 14.75 million with Euros 9.7 million European Commission funding, making it the largest « More than Moore » nanoelectronics project under EU Framework Programme 7.

DOTFIVE is aiming to establish a leadership position for the European semiconductor industry in the area of SiGe HBTs (Silicon-Germanium Heterojunction Bipolar Transistors) for millimeter wave applications, where semiconductor manufacturers like STMicroelectronics and Infineon Technologies are involved. "With this ambitious project, Europe is getting ahead of the RF roadmap defined in ITRS, strengthening its position in an area where the whole ecosystem is already strong", said Gilles Thomas, DOTFIVE project coordinator and STMicroelectronics R&D Cooperative Programs Manager. Emerging high-volume millimeter wave applications encompass, for example, 77 GHz automotive radar applications and 60 GHz WLAN (Wireless Local Area Network) communication systems. According to U.S.market research company Strategy Analysts, the market for long-range anti-collision warning systems in cars could increase by more than 65 percent per year until 2011. In addition to these already evolving markets, DOTFIVE technology sets out to be a key enabler for silicon-based millimeter wave circuits penetrating the so-called THz gap, enabling enhanced imaging systems with applications in the security, medical and scientific area.

Today's state-of-the-art SiGe HBTs achieve roughly a maximum operating frequency of 300 GHz at room temperature. The DOTFIVE project has set its goal at 500 GHz at room temperature, a performance usually thought only possible with III-V compound semiconductor technologies. A higher operating speed can open up new application areas at very high frequencies, or can be traded in for lower power dissipation, or can help to reduce the impact of process, voltage and temperature variations at lower frequencies for better circuit reliability. SiGe HBTs are key devices for high-frequency low-power applications. Compared to III-V compound semiconductor devices, they enable high density and low-cost integration making them suitable for consumer applications.

In order to achieve their goals, the DOTFIVE partners will team up for research and development work on silicon-based transistor architectures, device modeling, and circuit design. The project involves 15 partners from industry and academia in five countries:
Infineon Technologies (Germany) and STMicroelectronics (France) are capable of manufacturing 250 GHz HBTs on silicon and willing to push up to 500 GHz by working on structural and technological improvements;
IMEC (Belgium) and IHP (Germany), two research institutes working on innovative HBT concepts, new process modules and transistor structures on silicon wafers;
XMOD Technologies (France) and GWT-TUD (Germany), two small and medium enterprises (SMEs) capable of providing needed parameter extraction and RF device modeling expertise;
and seven academic partners - the Johannes Kepler University of Linz (Austria), the ENSEIRB (Ecole Nationale Supérieure d'Electronique, Informatique et Radiocommunications de Bordeaux), the Paris-Sud University (France), the Technical University of Dresden (Germany), the Bundeswehr University in Munich ( Germany), the University of Siegen (Germany), the University of Naples (Italy) - with a strong understanding of nano-transistors, simulation, modeling and characterization of devices as well as design of RF electronic functional blocks. ALMA (France) is in charge of all administrative and financial aspects of the project.

####

Contacts:
Quentin Lebourgeois
Alma Consulting Group
55 avenue rené Cassin
69009 Lyon
FRANCE

Tel: +33625120376

Project Coordinator:
Gilles THOMAS - STMicroelectronics
Mail :
TEL : +33 4 76 92 51 11

Copyright © European Union

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Chip Technology

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Announcements

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Alliances/Partnerships/Distributorships

Keysight Technologies Shifts to Direct Sales of High-Performance Products in North America March 3rd, 2015

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

Research partnerships

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Breakthrough in OLED technology March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE