Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Fluorescent organic nanoparticles help illuminate cellular proteins

Abstract:
Like a smart highlighter, immunofluorescent labeling can zero in on a specific protein, helping scientists understand the structure of a cell and how diseases affect that structure. Current techniques have disadvantages, though.

Fluorescent organic nanoparticles help illuminate cellular proteins

ANN ARBOR, MI | Posted on March 8th, 2008

University of Michigan scientists developed a non-toxic, organic nanoparticle for immunofluorescent labeling that makes a bright, longer-lasting glow without the drawbacks of today's popular methods. A paper on the research will be published in the March 18 edition of the journal Advanced Materials.

"We've demonstrated the promising application of organic nanoparticles for immunofluorescent labeling," said Jinsang Kim, assistant professor of materials science and engineering who is the principal investigator of this research.

"Our molecules show unique properties. When they clump together, they get brighter, which is the opposite of what normally happens. Normally, when fluorescent molecules clump together, they become much dimmer, which is called self-quenching. Self-quenching is not a problem for our molecules."

Immunofluorescent labeling works like this: Scientists join fluorescent particles with protein-seeking molecules and let the companions loose in cells to bind to the protein they want to locate and study. The scientists then radiate the mixture with ultraviolet light. The light causes the fluorescent particles to glow, giving away the location of the protein the scientists were looking for.

Certain diseases can change the amount of particular proteins in cells. Prostate tumors, for example, can increase the level of prostate-specific antigen, or PSA, which is a cellular protein.

For fluorescent particles, scientists can currently choose between organic fluorescent dyes and inorganic quantum dots, both of which have shortcomings. Organic fluorescent dyes wear out easily from the ultraviolet light and inorganic quantum dots are toxic.

Kim's nanoparticles bridge the gap between these methods. They're non-toxic, and the researchers' novel way of making the nanoparticles causes them to shine brightly without deteriorating as easily as organic dyes.

Kim and his colleagues started by directing the self-assembly of a new kind of green fluorescent organic molecule called DBO. They mixed the fluorescent organic molecules in water together with a molecule called diacetylene that formed multi-layered bubbles around the fluorescent molecules and formed polymers. The fluorescent molecules glowed more than 12 times brighter in the multi-layered bubbles than they did in plain solution because of a unique arrangement of the molecules inside the bubbles.

The researchers tested their new nanoparticles by attaching them to biotin, a molecule that binds readily with the protein avidin. The researchers released the nanoparticles with biotin on a glass slide containing spots of avidin. The biotin found the avidin and Kim's nanoparticles glowed.

"More interestingly," Kim said, "the pressure-sensitive polydiacetylene bilayer surrounding the fluorescent nanoparticles also produced its own red fluorescence induced by the pressure the nanoparticles experienced when they attached to the target area. Green can't be seen through skin, but red can. This suggests additional applications for these nanoparticles."

The paper is called "Highly Emissive Self-assembled Organic Nanoparticles having Dual Color Capacity for Targeted Immunofluorescent Labeling."

Jinsang is also an assistant professor of Chemical Engineering, Macromolecular Science and Engineering and Biomedical Engineering. Other authors of the paper include: Hyong-Jun Kim, research fellow in Materials Science and Engineering; Jiseok Lee, graduate student in Macromolecular Science and Engineering.

####

About University of Michigan
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. Michigan Engineering boasts one of the largest engineering research budgets of any public university, at more than $130 million annually. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and the Graham Environmental Sustainability Institute. Within the college, there is a special emphasis on research in three emerging areas: nanotechnology and integrated microsystems; cellular and molecular biotechnology; and information technology. Michigan Engineering is raising $300 million for capital projects and program support in these and other areas to continue fostering breakthrough scholarly advances, an unparalleled scope of student opportunities and contributions that improve the quality of life on an international scale.

For more information, please click here

Contacts:
Nicole Casal Moore
Phone: (734) 647-1838

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Nanobiotix establishes promising preclinical proof-of-concept in Immuno Oncology May 31st, 2016

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Nanomedicine

Nanobiotix establishes promising preclinical proof-of-concept in Immuno Oncology May 31st, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Discoveries

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Announcements

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Nanobiotix establishes promising preclinical proof-of-concept in Immuno Oncology May 31st, 2016

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic