Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Fluorescent organic nanoparticles help illuminate cellular proteins

Abstract:
Like a smart highlighter, immunofluorescent labeling can zero in on a specific protein, helping scientists understand the structure of a cell and how diseases affect that structure. Current techniques have disadvantages, though.

Fluorescent organic nanoparticles help illuminate cellular proteins

ANN ARBOR, MI | Posted on March 8th, 2008

University of Michigan scientists developed a non-toxic, organic nanoparticle for immunofluorescent labeling that makes a bright, longer-lasting glow without the drawbacks of today's popular methods. A paper on the research will be published in the March 18 edition of the journal Advanced Materials.

"We've demonstrated the promising application of organic nanoparticles for immunofluorescent labeling," said Jinsang Kim, assistant professor of materials science and engineering who is the principal investigator of this research.

"Our molecules show unique properties. When they clump together, they get brighter, which is the opposite of what normally happens. Normally, when fluorescent molecules clump together, they become much dimmer, which is called self-quenching. Self-quenching is not a problem for our molecules."

Immunofluorescent labeling works like this: Scientists join fluorescent particles with protein-seeking molecules and let the companions loose in cells to bind to the protein they want to locate and study. The scientists then radiate the mixture with ultraviolet light. The light causes the fluorescent particles to glow, giving away the location of the protein the scientists were looking for.

Certain diseases can change the amount of particular proteins in cells. Prostate tumors, for example, can increase the level of prostate-specific antigen, or PSA, which is a cellular protein.

For fluorescent particles, scientists can currently choose between organic fluorescent dyes and inorganic quantum dots, both of which have shortcomings. Organic fluorescent dyes wear out easily from the ultraviolet light and inorganic quantum dots are toxic.

Kim's nanoparticles bridge the gap between these methods. They're non-toxic, and the researchers' novel way of making the nanoparticles causes them to shine brightly without deteriorating as easily as organic dyes.

Kim and his colleagues started by directing the self-assembly of a new kind of green fluorescent organic molecule called DBO. They mixed the fluorescent organic molecules in water together with a molecule called diacetylene that formed multi-layered bubbles around the fluorescent molecules and formed polymers. The fluorescent molecules glowed more than 12 times brighter in the multi-layered bubbles than they did in plain solution because of a unique arrangement of the molecules inside the bubbles.

The researchers tested their new nanoparticles by attaching them to biotin, a molecule that binds readily with the protein avidin. The researchers released the nanoparticles with biotin on a glass slide containing spots of avidin. The biotin found the avidin and Kim's nanoparticles glowed.

"More interestingly," Kim said, "the pressure-sensitive polydiacetylene bilayer surrounding the fluorescent nanoparticles also produced its own red fluorescence induced by the pressure the nanoparticles experienced when they attached to the target area. Green can't be seen through skin, but red can. This suggests additional applications for these nanoparticles."

The paper is called "Highly Emissive Self-assembled Organic Nanoparticles having Dual Color Capacity for Targeted Immunofluorescent Labeling."

Jinsang is also an assistant professor of Chemical Engineering, Macromolecular Science and Engineering and Biomedical Engineering. Other authors of the paper include: Hyong-Jun Kim, research fellow in Materials Science and Engineering; Jiseok Lee, graduate student in Macromolecular Science and Engineering.

####

About University of Michigan
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. Michigan Engineering boasts one of the largest engineering research budgets of any public university, at more than $130 million annually. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and the Graham Environmental Sustainability Institute. Within the college, there is a special emphasis on research in three emerging areas: nanotechnology and integrated microsystems; cellular and molecular biotechnology; and information technology. Michigan Engineering is raising $300 million for capital projects and program support in these and other areas to continue fostering breakthrough scholarly advances, an unparalleled scope of student opportunities and contributions that improve the quality of life on an international scale.

For more information, please click here

Contacts:
Nicole Casal Moore
Phone: (734) 647-1838

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Nanomedicine

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discoveries

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

Announcements

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic