Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Physicists Transcribe Entanglement into and out of a Quantum Memory

Abstract:
Scientists at the California Institute of Technology have laid the groundwork for a crucial step in quantum information science. They show how entanglement, an essential property of quantum mechanics, can be generated between beams of light, stored in a quantum memory, and mapped back into light with the push of a button.

Physicists Transcribe Entanglement into and out of a Quantum Memory

PASADENA, CA | Posted on March 8th, 2008

In the March 6 issue of the journal Nature, Caltech Valentine Professor of Physics H. Jeff Kimble and his colleagues demonstrate for the first time an important capability required for the control of quantum information and quantum networks, namely the coherent conversion of photonic entanglement into and out of separated quantum memories.

Entanglement lies at the heart of quantum physics, and is a state where parts of a composite system are more strongly correlated than is possible for any classical counterparts regardless of the distance separating them. Entanglement is a critical resource for diverse applications in quantum information science, such as for quantum metrology, computation, and communication. Quantum networks rely on entanglement for the teleportation of quantum states from place to place.

In a quest to turn these abstract ideas into real laboratory systems and to distribute entanglement to remote locations (even on a continental scale), Kimble explains that quantum physicists have studied ways to propagate photonic information into and out of quantum memory using a system called a quantum repeater, invented in 1998 by H. Briegel, J.I. Cirac, and P. Zoller at the University of Innsbruck. Until now, work in Kimble's group on the realization of a quantum repeater with atomic ensembles relied upon the probabilistic creation of entanglement. In this setting entanglement between two clouds of atoms was generated probabilistically but with an unambiguous heralding event.

While such systems hold the potential for scalable quantum networks, it has been difficult for Kimble's Quantum Optics Group to apply such schemes to certain protocols necessary for quantum networks, such as entanglement connection. Now, with the new protocol and future improvements, "We can push a button and generate entanglement," says physics graduate student Kyung Soo Choi, one of four authors of the Caltech experiment.

While entanglement has been traditionally carried out with photons in attempt to connect two distant systems, these particles of light are difficult to store because of their small interactions with matter when taken one by one. A quantum memory for light is an essential ingredient for achieving scalable quantum networks with photons. Choi says. "The question is now, 'How do you change the entangled state of light into an entanglement of matter and back into light?'" This was not possible for any physical system until now.

The new work, Choi says, "is a proof-of-principle demonstration that entanglement between material systems can be generated deterministically by mapping the entanglement of light to and from two spatially separated quantum memories." The Caltech team separated the processes for generating and storing the entanglement, thereby breaking a previous inherent link between the quality and probability of state preparation. "In a general context, our work represents an important step in laboratory capabilities for the creation and manipulation of entangled states of light and matter. We hope that our results will be useful as a tool in the effort to realize quantum repeaters and thereby scalable quantum networks over long distances," remarks Kimble.

In the Caltech experiment, a single photon is first split, generating an entangled state of light with quantum amplitudes for the photon to propagate two distinct paths, taking both at once. The Caltech team in turn transcribed, or mapped, the entanglement onto distinct atomic ensembles separated by one millimeter. To create the interface between the light and matter, the team employed laser-cooled cesium atoms whose atomic states interact with a control laser to create destructive quantum interference, making the atomic ensembles either invisible or highly opaque to the input light. Called Electromagnetically Induced Transparency and pioneered by S. Harris at Stanford University, the mechanism manipulates the speed of the light for the incoming entangled photon and that kicks off the entire procedure.

"We can reduce the speed of light to the speed of a train, and then in fact stop the light inside the matter by slowly turning off the control laser, where now the quantum information--the entangled state of light--is stored inside the atomic ensembles," Choi describes. "By turning on the control laser again, we can reversibly accelerate the 'stopped' light back to the speed of light and restore the quantum entanglement as propagating beams of light."

In this experiment, the photonic entanglement was mapped into the atomic ensembles in a time ~ 20 nanoseconds and then stored in the atomic ensembles for one microsecond, with storage times extendable up to 10 microseconds. The photonic entanglements of the input and output of the quantum interface were explicitly quantified with a conversion efficiency of 20 percent. However, the researchers emphasize, real-world realization of a quantum network remains far out of reach even with these parameters and the state-of-the-art of quantum controls. Choi comments, "Further improvements in quantum control and storage capabilities in matter-light interfaces will lead to fruitful and exciting discoveries in Quantum Information Science, including for the realization of quantum networks."

In addition to Kimble and Choi, other authors are Hui Deng, a postdoctoral scholar at the Center for the Physics of Information (whose contributions to the work equaled that of Choi's); and Julien Laurat, a former Caltech physics postdoctoral scholar who is now an associate professor at Laboratoire Kastler Brossel (Universite P. et M. Curie, Ecole Normale Superieure and CNRS) in Paris, France.

####

About California Institute of Technology
The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.

For more information, please click here

Contacts:
Kyung Soon Choi
(626) 395-8343

Copyright © California Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Physics

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

'Perfect Liquid' Quark-Gluon Plasma is the Most Vortical Fluid: Swirling soup of matter's fundamental building blocks spins ten billion trillion times faster than the most powerful tornado, setting new record for "vorticity" August 4th, 2017

The first light atomic nucleus with a second face July 20th, 2017

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Quantum Computing

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Clarifiying complex chemical processes with quantum computers August 3rd, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Into the quantum world with a tennis racket: Classical mechanics helps control quantum computers July 6th, 2017

Discoveries

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Announcements

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Quantum nanoscience

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Nanocrystalline LEDs: Red, green, yellow, blue ... August 7th, 2017

Scientists discover new magnet with nearly massless charge carriers July 29th, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project