Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Physicists Transcribe Entanglement into and out of a Quantum Memory

Abstract:
Scientists at the California Institute of Technology have laid the groundwork for a crucial step in quantum information science. They show how entanglement, an essential property of quantum mechanics, can be generated between beams of light, stored in a quantum memory, and mapped back into light with the push of a button.

Physicists Transcribe Entanglement into and out of a Quantum Memory

PASADENA, CA | Posted on March 8th, 2008

In the March 6 issue of the journal Nature, Caltech Valentine Professor of Physics H. Jeff Kimble and his colleagues demonstrate for the first time an important capability required for the control of quantum information and quantum networks, namely the coherent conversion of photonic entanglement into and out of separated quantum memories.

Entanglement lies at the heart of quantum physics, and is a state where parts of a composite system are more strongly correlated than is possible for any classical counterparts regardless of the distance separating them. Entanglement is a critical resource for diverse applications in quantum information science, such as for quantum metrology, computation, and communication. Quantum networks rely on entanglement for the teleportation of quantum states from place to place.

In a quest to turn these abstract ideas into real laboratory systems and to distribute entanglement to remote locations (even on a continental scale), Kimble explains that quantum physicists have studied ways to propagate photonic information into and out of quantum memory using a system called a quantum repeater, invented in 1998 by H. Briegel, J.I. Cirac, and P. Zoller at the University of Innsbruck. Until now, work in Kimble's group on the realization of a quantum repeater with atomic ensembles relied upon the probabilistic creation of entanglement. In this setting entanglement between two clouds of atoms was generated probabilistically but with an unambiguous heralding event.

While such systems hold the potential for scalable quantum networks, it has been difficult for Kimble's Quantum Optics Group to apply such schemes to certain protocols necessary for quantum networks, such as entanglement connection. Now, with the new protocol and future improvements, "We can push a button and generate entanglement," says physics graduate student Kyung Soo Choi, one of four authors of the Caltech experiment.

While entanglement has been traditionally carried out with photons in attempt to connect two distant systems, these particles of light are difficult to store because of their small interactions with matter when taken one by one. A quantum memory for light is an essential ingredient for achieving scalable quantum networks with photons. Choi says. "The question is now, 'How do you change the entangled state of light into an entanglement of matter and back into light?'" This was not possible for any physical system until now.

The new work, Choi says, "is a proof-of-principle demonstration that entanglement between material systems can be generated deterministically by mapping the entanglement of light to and from two spatially separated quantum memories." The Caltech team separated the processes for generating and storing the entanglement, thereby breaking a previous inherent link between the quality and probability of state preparation. "In a general context, our work represents an important step in laboratory capabilities for the creation and manipulation of entangled states of light and matter. We hope that our results will be useful as a tool in the effort to realize quantum repeaters and thereby scalable quantum networks over long distances," remarks Kimble.

In the Caltech experiment, a single photon is first split, generating an entangled state of light with quantum amplitudes for the photon to propagate two distinct paths, taking both at once. The Caltech team in turn transcribed, or mapped, the entanglement onto distinct atomic ensembles separated by one millimeter. To create the interface between the light and matter, the team employed laser-cooled cesium atoms whose atomic states interact with a control laser to create destructive quantum interference, making the atomic ensembles either invisible or highly opaque to the input light. Called Electromagnetically Induced Transparency and pioneered by S. Harris at Stanford University, the mechanism manipulates the speed of the light for the incoming entangled photon and that kicks off the entire procedure.

"We can reduce the speed of light to the speed of a train, and then in fact stop the light inside the matter by slowly turning off the control laser, where now the quantum information--the entangled state of light--is stored inside the atomic ensembles," Choi describes. "By turning on the control laser again, we can reversibly accelerate the 'stopped' light back to the speed of light and restore the quantum entanglement as propagating beams of light."

In this experiment, the photonic entanglement was mapped into the atomic ensembles in a time ~ 20 nanoseconds and then stored in the atomic ensembles for one microsecond, with storage times extendable up to 10 microseconds. The photonic entanglements of the input and output of the quantum interface were explicitly quantified with a conversion efficiency of 20 percent. However, the researchers emphasize, real-world realization of a quantum network remains far out of reach even with these parameters and the state-of-the-art of quantum controls. Choi comments, "Further improvements in quantum control and storage capabilities in matter-light interfaces will lead to fruitful and exciting discoveries in Quantum Information Science, including for the realization of quantum networks."

In addition to Kimble and Choi, other authors are Hui Deng, a postdoctoral scholar at the Center for the Physics of Information (whose contributions to the work equaled that of Choi's); and Julien Laurat, a former Caltech physics postdoctoral scholar who is now an associate professor at Laboratoire Kastler Brossel (Universite P. et M. Curie, Ecole Normale Superieure and CNRS) in Paris, France.

####

About California Institute of Technology
The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.

For more information, please click here

Contacts:
Kyung Soon Choi
(626) 395-8343

Copyright © California Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Physics

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

Unusual Electronic State Found in New Class of Unconventional Superconductors: Finding gives scientists a new group of materials to explore to unlock secrets of some materials' ability to carry current with no energy loss December 8th, 2014

Quantum Computing

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

Graphene layer reads optical information from nanodiamonds electronically: Possible read head for quantum computers December 1st, 2014

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Discoveries

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Announcements

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Quantum nanoscience

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE