Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoscale tool allows scientists to study membrane proteins one at a time

Isolation chamber. A new tool developed at Rockefeller allows scientists to study membrane proteins individually, or in pairs, to see how they interact with other molecules. The scientists use an electron microscope to take images of isolated NABBs and categorize the orientation of the receptors they contain as either antiparallel (top) or parallel (bottom).
Isolation chamber. A new tool developed at Rockefeller allows scientists to study membrane proteins individually, or in pairs, to see how they interact with other molecules. The scientists use an electron microscope to take images of isolated NABBs and categorize the orientation of the receptors they contain as either antiparallel (top) or parallel (bottom).

Abstract:
In biology, as in construction, it's all about having tools that fit the job. Researchers at Rockefeller University have now created a tiny tool, more than 10,000 times smaller than the diameter of a human hair, capable of encasing single membrane proteins from living cells. The new system, which resembles a nanoscale sushi roll, will allow investigators to individually stimulate these key proteins with specific molecules and signals in order to precisely define the biological reactions that result.

Nanoscale tool allows scientists to study membrane proteins one at a time

New York, NY | Posted on March 7th, 2008

The Nanoscale Apolipoprotein Bound Bilayers (NABBs), developed by scientists in Rockefeller's Laboratory of Molecular Biology and Biochemistry and reported in the Journal of Molecular Biology, is a versatile device that can likely be adapted to any of the myriad transmembrane receptors that direct cell activity by reacting to molecules outside the cell and activating signals inside the cell.

"Today it is impossible to know exactly what a single protein on the surface of a cell that has thousands of other proteins is doing. It might be acting on its own or binding to one or more other proteins," says Thomas Sakmar, Richard M. and Isabel P. Furlaud Professor and head of the laboratory and the study's senior investigator. "With this tool, we can control the receptor's membrane environment and test all possibilities of interaction with ligands, other receptors or other proteins. It's one way to figure out how a complex system works."

Previously, researchers studied the functions of such proteins by investigating literally millions of them floating together in a soup created when cell membranes are broken apart and solubilized chemically. But this method of studying proteins is problematic, the researchers say: The membrane protein mixtures tend to be inhomogeneous and it is difficult — partially due to poor stability of the isolated proteins — to purify them in their active state in order to understand what the receptors are doing individually.

The solution, devised by Sakmar, first author Sourabh Banerjee, a graduate student in the Tri-Institutional Chemical Biology Program, and Thomas Huber, a postdoc, arose as the team searched for a way to exquisitely catalogue the functions of individual G-protein-coupled receptors (GPCRs), a large family of transmembrane proteins that are involved in many diseases and are often the target of medicinal agents. The structure they built was developed using a hard-working human transport particle, the high-density lipoprotein (HDL), as a model system. This flat, circular structure is essentially a complex of phospholipids belted together by apolipoprotein A-I (apo A-I) to carry cholesterol and lipids through blood to the liver.

Assuming that evolutionary forces might have already optimized a biological solution to an engineering problem, Huber suggested using apo A-I from zebrafish. "Based on the sequence of zebrafish apo A-I, we thought that it may yield structurally homogeneous discs," Banerjee says. So in their NABB, zebrafish apo A-I (known as zap1) forms a belt that makes two layers of lipids stick together — like the seaweed that keeps sticky rice together in sushi.

They then devised a method to trigger rapid self-assembly of these disc-like nanoparticles from mixtures of zap1, lipids and extracted cellular membrane proteins. "We have made it fairly straightforward to make these structures and they form in less than an hour," says Banerjee, who coined the term NABBs.

The team visualized individual antibody fragments bound to the receptors with an electron microscope. And, as a proof of principle, they experimented with rhodopsin, a prototypical GPCR. They found that rhodopsin was remarkably stable in NABBs — as stable as in its native membranes. They also found that it doesn't require a "dimer," or union of two rhodopsin receptors, to produce a response — as many scientists had argued — but that rhodopsin can be activated in its monomeric form.

"Each protein is very happy inside its own disc and the beauty is that both sides of these receptors, the part that is inside the cell and the part that is outside, are exposed to whatever you want to test it with," Sakmar says. "That way we can use it to monitor what happens on both sides of the cell membrane."

"This tool can be used for a wide variety of membrane proteins," Banerjee says. "We think it will be important for high-throughput screening for new drugs that can bind to membrane proteins involved in disease."

Journal of Molecular Biology online: February 2, 2008

####

About Rockefeller University
The university’s laboratory-based organizational structure “without walls” and pared-down layers of administration do away with the schools and academic departments that too often separate scientists. “This approach fosters a tremendously rich soup of interdisciplinary research and collaboration,” says Rockefeller professor and Nobel laureate Günter Blobel.

For more information, please click here

Contacts:
Joseph Bonner
212-327-8998

Copyright © Rockefeller University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Kalam: versatility personified August 1st, 2015

Nanomedicine

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Discoveries

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Tools

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Take a trip through the brain July 30th, 2015

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

Nanobiotechnology

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project