Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers control growth rate of replacement blood vessels, tissues

Macroscopic photographs of scaffolds before (left) and after (right) nanosphere incorporation
Macroscopic photographs of scaffolds before (left) and after (right) nanosphere incorporation

Abstract:
Researchers have discovered a way to control the growth rate of replacement tissue and the formation of new blood vessels, which solves one of the vexing problems of growing replacement tissue to treat injuries and trauma in humans.

Researchers control growth rate of replacement blood vessels, tissues

ANN ARBOR. MI | Posted on March 7th, 2008

The procedure could be used in bone grafts, tissue replacement, dental procedures or for diabetics or elderly patients who experience wound healing problems, said William Giannobile, professor at the University of Michigan School of Dentistry and College of Engineering, and corresponding author of the paper. Peter Ma, U-M professor with appointments in engineering and dentistry, is co-author and principal investigator on the National Institutes of Health project.

"If you have such a large defect that your body can't completely heal, this is a way to augment and dose a natural wound healing protein," Giannobile said.

Researchers put platelet-derived growth factor into nanoparticles and then attached them to a lattice-like, biodegradable scaffold. In experiments, the growth factor recruited cells that stimulate the body's own machinery responsible for healing, said Ma, whose lab developed the scaffold and the nanoparticles.

As the tissue grows, it crawls into the scaffold, which eventually dissolves.

"Growth factor is typically dumped in and releases over a period of hours," said Giannobile, who also directs the Michigan Center for Oral Health Research. "With certain wounds you might want a lot (of growth factor) in the beginning, and with others you might want a little released over a longer period of time. We've basically found a way to dial up or dial down the release rate of these growth factors."

Platelet derived growth factor is FDA-approved for treatment of diabetic ulcers and to promote bone repair in tooth-associated defects, but time-release delivery has been a big problem. Ma said the one of the keys was finding a way to preserve the biological properties of the growth factor in the nanoparticle for controlled release.

The next step is to evaluate a broader range of wounds, followed by early stage human studies, Giannobile said.

The research is funded by the National Institutes of Health.

The paper, Nanofibrous Scaffolds Incorporating PDGF-BB Microspheres Induce Chemokine Expression and Tissue Neogenesis In Vivo is available online at the Public Library of Science.

####

For more information, please click here

Contacts:
Laura Bailey
Phone: (734) 647-1848

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project