Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Good Vibrations Probe Innards of Molecular Electronic Junctions

NIST researchers determined that the organic molecules in the middle of this simple silicon-based molecular “sandwich” pass electric current through these junctions by carefully measuring the minute changes in molecular vibrations.

Credit: NIST
NIST researchers determined that the organic molecules in the middle of this simple silicon-based molecular “sandwich” pass electric current through these junctions by carefully measuring the minute changes in molecular vibrations.
Credit: NIST

Abstract:
Using an unusual spectroscopic technique, researchers at the National Institute of Standards and Technology (NIST) have provided the most convincing evidence yet that current is flowing through a simple silicon-based molecular "sandwich," which is the most basic structure of molecular electronics. The work* is an important step toward realizing the dream of organic molecule-based electronics that could enable much denser, cheaper computer memories and other replacements of traditional electronic devices.

Good Vibrations Probe Innards of Molecular Electronic Junctions

GAITHERSBURG, MD | Posted on March 6th, 2008

"The ultimate in miniaturization is the molecule," explains NIST's Curt Richter. "The hope is that a single molecule will one day be able to act as an electrical component such as a diode or a resistor with the ultimate goal being shrinking computer chips."

For the past few years, scientists have been building and testing structures made of a hybrid of traditional silicon-based components and more futuristic molecule-based components. The typical junction is a sandwich of a metallic contact layer, a layer of organic compound just a single molecule thick arranged like bristles on a brush, and a substrate of silicon. Richter says that while the electric current seems to pass through the molecules, the current could be finding a way around it or the molecules could have been damaged in fabrication. Scientists want to know what is really happening inside this "black box."

NIST researchers tried a little-used technique called inelastic electron tunneling spectroscopy (IETS) that measures the vibrations of the molecules inside the junction. "Each molecule has its own vibrational fingerprint," says Wenyong Wang, adding "IETS acts as our eyes to see what is inside the black box." An earlier paper by Wang and his colleagues at Yale University set IETS as a standard technique to prove that molecules remain intact in metal-based molecular electronic devices.

Colleagues at Purdue University provided three types of silicon-molecule-metal junctions that are a few micrometers large. The small molecules researchers used were octadecane, nitrobenzene and diethylaminobenzene.

Each silicon-molecule-metal device was cooled to cryogenic temperatures. Wang carefully measured the minute changes in the current passing through the junctions, and these current changes were then related to specific molecular vibrations. Thus, the researchers verified the existence of the molecules and that the electric current passed through them.

NIST physicists plan to continue research into silicon-molecule-metal junctions. "Once we understand the physics of the devices, we can begin to assess how viable the technology is and also determine which molecules may supply the best chance for a technological breakthrough," says Richter.

* W. Wang, A. Scott, N. Gergel-Hackett, C.A. Hacker, D.B. Janes and C.A. Richter. Probing molecules in integrated silicon-molecule-metal junctions by inelastic tunneling spectroscopy. ACS Nano Letters, 8, 478 (2008).

####

About NIST
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Evelyn Brown

(301) 975-5661

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Chip Technology

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Nanoelectronics

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project