Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > IBM Scientists "Quiet" Unruly Electrons in Atomic Layers of Graphite

IBM'S ATOMIC 'CHICKENWIRE' FOR NANOELECTRONICS: The image on the left shows a single layer, or sheet of carbon molecules known as Graphene. The noise that occurs from electrical signals bouncing around in the material as a current is passed through it is greater as the device is made smaller and smaller, impeding the performance for nanoscale electronics. In the image on the right, the IBM scientists demonstrated for the first time that adding a second sheet of Graphene reduces the noise significantly, giving promise to this material for potential use in future nanoelectronics.
IBM'S ATOMIC 'CHICKENWIRE' FOR NANOELECTRONICS: The image on the left shows a single layer, or sheet of carbon molecules known as Graphene. The noise that occurs from electrical signals bouncing around in the material as a current is passed through it is greater as the device is made smaller and smaller, impeding the performance for nanoscale electronics. In the image on the right, the IBM scientists demonstrated for the first time that adding a second sheet of Graphene reduces the noise significantly, giving promise to this material for potential use in future nanoelectronics.

Abstract:
Atomic-Sized Graphene Double Layer Holds Nanoelectronics Promise

IBM Scientists "Quiet" Unruly Electrons in Atomic Layers of Graphite

YORKTOWN HEIGHTS, NY | Posted on March 5th, 2008

IBM (NYSE: IBM) Researchers today announced a discovery that combats one of the industry's most perplexing problems in using graphite -- the same material found inside pencils -- as a material for building nanoelectonic circuits vastly smaller than those found in today's silicon based computer chips.

For the first time anywhere, IBM scientists have found a way to suppress unwanted interference of electrical signals created when shrinking graphene, a two-dimensional, single-atomic layer thick form of graphite, to dimensions just a few atoms long.

Scientists around the world are exploring the use of graphene as a much smaller replacement for today's silicon transistors. Graphene is a two-dimensional honeycomb lattice of carbon atoms, similar to atomic-scale chicken-wire, which has attracted strong scientific and technological interest because it exhibits promising electrical properties and could be used in transistors and circuits at scales vastly smaller than components inside of today's tiniest computer chips.

One problem in using these nano-devices is the inverse relationship between the size of the device and the amount of uncontrolled electrical noise that is generated: as they are made smaller and smaller, the noise -- electrical charges that bounce around the material causing all sorts of interference that impede their usefulness -- grows larger and larger. This trend is known as Hooge's rule, and occurs in traditional silicon based devices as well as in graphene nano-ribbons and carbon nanotube based devices.

"The effect of noise from Hooge's rule is exaggerated at the nanoscale because the dimensions are approaching the nearly smallest limits, down to only a handful of atoms, and the noise that is created can overwhelm the electrical signal that needs to be achieved to be useful," said IBM Researcher Dr. Phaedon Avouris, who leads IBM's exploration into carbon nanotubes and graphene. "To quote the famous physicist Rolf Landauer, at the nanoscale 'the noise is your signal'; in other words, you cannot produce any useful electronic device at the nanoscale if the noise is comparable to the signal you are trying to switch on and off."

Now, IBM scientists have found that the noise in graphene-based semiconductor devices can, in fact, be suppressed and report the results today in the journal Nano Letters.

In their experiments, the IBM Researchers first used a single layer, or sheet, of graphene to build a transistor and noted that the device does in fact follow Hooge's Rule: as they are made smaller and smaller, there is an increase in the noise that is created.

Two Layers Are Better Than One

However, when the IBM Researchers built the same device with two sheets of graphene instead of one -- one stacked on top of the other -- they noted that the noise is suppressed, and is weak enough that these so-called bilayer graphene ribbons could prove useful for building future semiconductor devices for use in sensors, communications devices, computing systems and more. The noise is inhibited because of the strong electronic coupling between the two graphene layers that counteracts the influence of the noise sources: the system acts as a noise insulator.

While further detailed analysis and studies are required to better understand these phenomena, the findings provide exciting opportunities for graphene bilayers in a variety of applications.

The report on this work, entitled "Strong Suppression of Electrical Noise in Bilayer Graphene Nanoribbons" by Yu-Ming Lin and Phaedon Avouris of IBM's T.J.Watson Research Center in Yorktown Heights, N.Y. is available online at the journal Nano Letters:
pubs.acs.org/cgi-bin/abstract.cgi/nalefd/asap/abs/nl080241l.html

####

For more information, please click here

Contacts:
Michael Loughran
IBM
914.945.1613

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Nano-hashtags' could provide definite proof of Majorana particles: Eindhoven network of nanowires gives particles the space to exchange places August 23rd, 2017

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

Chip Technology

'Nano-hashtags' could provide definite proof of Majorana particles: Eindhoven network of nanowires gives particles the space to exchange places August 23rd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Nanoelectronics

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

GLOBALFOUNDRIES, Silicon Mobility Deliver the Industry’s First Automotive FPCU to Boost Performance for Hybrid and Electric Vehicles: Silicon Mobility and GF’s 55nm LPx -enabled platform, with SST’s highly-reliable SuperFlash® memory technology, boosts automotive performance, ene August 3rd, 2017

Scientists discover new magnet with nearly massless charge carriers July 29th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Discoveries

'Nano-hashtags' could provide definite proof of Majorana particles: Eindhoven network of nanowires gives particles the space to exchange places August 23rd, 2017

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

Announcements

'Nano-hashtags' could provide definite proof of Majorana particles: Eindhoven network of nanowires gives particles the space to exchange places August 23rd, 2017

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project