Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The March of the Carbon Nanotubes

Anders Nilsson and Anton Nikitin at the beam line.
Anders Nilsson and Anton Nikitin at the beam line.

Abstract:
Stanford Synchrotron Radiation Laboratory (SSRL) researchers have surpassed by a surprising margin the Department of Energy's goal for storing hydrogen within a unique material called carbon nanotubes. The pioneering result, published in the American Chemical Society's Nano Letters, brings us one step closer to realizing hydrogen as a source of energy.

The March of the Carbon Nanotubes

Menlo Park, CA | Posted on March 4th, 2008

"We are trying to find a way to make hydrogen-power affordable," graduate student Anton Nikitin said. "Current vehicle prototypes cost over two million dollars. Sustainable developments will rise only from examining this problem piece by piece."

Hydrogen - the most abundant element in the universe - is an attractive carrier of renewable energy. It can be used in fuel cells to produce electricity, with the only byproduct being water. However, developing safe and efficient methods of storing hydrogen remains a challenge.

Current methods for storing hydrogen are expensive and inefficient. Storing hydrogen in tanks made from costly composite materials requires dangerously high pressures of up to 10,000 pounds per square inch. Compressing hydrogen is expensive, and the energy required outweighs the benefits.

Nikitin and his colleagues were able to pack seven percent by weight hydrogen into carbon nanotubes through the formation of bonds with carbon atoms. The chemically grown nanotubes are made of pure carbon and have walls a single atom thick. Because single-walled nanotubes are essentially all surface area, they can theoretically store an enormous proportion of hydrogen, making it a promising storage medium.

Demand for carbon nanotubes - in fields ranging from electronics to medicine - adds to the excitement surrounding this material, but don't expect hydrogen energy to appear overnight. Associate Professor Anders Nilsson estimates that it will be 20 years before all of the pieces come together.

"The world is possibly facing the biggest challenge of modern civilization," Nilsson said, "and science plays a pivotal role in developing a long-term solution."


####

For more information, please click here

Contacts:
Anders Nilsson


Anton Nikitin

Copyright © Stanford Synchrotron Radiation Laboratory (SSRL)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360ís Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Discoveries

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Announcements

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360ís Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Energy

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic