Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > BioForce Nanosciences’ Nano eNabler™ System Called ``Disruptive Technology'' by Frost & Sullivan

Abstract:
Advantages over Existing Methods of Printing Biological Materials

BioForce Nanosciences’ Nano eNabler™ System Called ``Disruptive Technology'' by Frost & Sullivan

AMES, IA | Posted on February 29th, 2008

BioForce Nanosciences Holdings, Inc. (OTC BB: BFNH), a producer of integrated biological and mechanical systems for life science researchers at the micro and nano scales, today announced that its Nano eNabler™ molecular printer was called a "disruptive technology" in a recent report by Frost and Sullivan. The report highlighted key advantages over existing technologies for the deposition of biological materials via printing and lithography at ultramicro and nano levels. These capabilities are a critical step in the development and production of new types of miniaturized biosensors for detecting pathogens or screening biomarkers.

Frost and Sullivan's report says, "The Nano eNabler system is an example of a disruptive technology that challenges the conventional methods of printing and lithography." The consulting firm noted that the closest sources of competition in the biomolecular printing market are dip pen nanolithography (DPN), nanopipettes, elastomeric (PDMS) microcontact printing, and ink jet printing and that the Nano eNabler has advantages over each of these.

"The Nano eNabler system improves upon DPN by expanding the patterning area from 100 micrometers to 50 mm. Nanopipettes suffer from unfortunate clogging problems due to their small inside diameter. The surface patterning tools used on the Nano eNabler system utilizes an open channel microfluidic design that prevents clogging," the report states.

In addition, Frost and Sullivan notes that PDMS stamps are expensive, and "the technique does not lend itself to multiplexing with a second molecule due to alignment issues." The Nano eNabler "overcomes these limitations by allowing instant pattern revisions from the NanoWare™ software interface, as well as simplified and precise multiplexing for the creation of complex multiple component patterns."

Ink jet printers can clog if the solution is not well-filtered and cannot achieve the small volumes that the Nano eNabler can. The report notes, "If small spots or lines in the 1 to 30 micrometer range are needed, ink jet technology will not be able to meet those specifications, although the Nano eNabler has been designed for just that purpose."

Michael Lynch, Director of NeN Products, BioForce, stated that "The key advantages of the Nano eNabler system are printing small volumes of biomolecules, precision, speed, and multiplexing, which enables biosensors to detect multiple analytes. These same advantages are also driving robust interest in cell biology applications from scientists in tissue engineering, neuroscience, stem cell research, and pharmaceutical compound screening."

According to Dr. Saju Nettikadan, Director of Emerging Technologies (ET), BioForce, "The business development efforts of the ET group include providing technical support to biosensor researchers, developing in-house biosensor products and collaborating with potential biosensor developers in developing commercial products. The company expects to convert the Nano eNabler system into a biosensor production tool as biosensor prototypes evolve into commercial products."

####

About BioForce Nanosciences Holdings, Inc.
BioForce Nanosciences creates products and solutions for the life sciences by integrating biological and mechanical systems at the micro and nano scales. BioForce’s flagship product, the Nano eNabler™ molecular printer, gives the Company and its customers a platform for development and discovery by printing tiny domains of biological materials on surfaces with nanometer special precision. BioForce technology is being used in areas such as biosensor functionalization; pattering and cell adhesion; and the printing of proteins to guide neural cell growth. For more information, visit www.bioforcenano.com or call 515-233-8333.

This news release contains forward-looking information that may be affected by certain risks and uncertainties, including those risks and uncertainties described in BioForce Nanosciences' most recent filings with the Securities and Exchange Commission. BioForce Nanosciences' actual results could differ materially from such forward-looking statements. BioForce assumes no duty to update these statements at any future date.

For more information, please click here

Contacts:
BioForce Nanosciences Holdings, Inc.
Gregory D. Brown, 515-233-8333 ext# 118
Chief Financial Officer

or
Porter, LeVay & Rose, Inc.
212-564-4700
Marlon Nurse, VP – Investor Relations

Jeffrey Myhre, VP – Editorial

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Sensors

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project