Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Breakthroughs in nanotechnology on edge of 'knowledge frontier'

Abstract:
MU scientist's nanotech research earns him 'Outstanding Missourian' award

Breakthroughs in nanotechnology on edge of 'knowledge frontier'

University of Missouri-Columbia | Posted on February 28th, 2008

University of Missouri scientist Kattesh Katti recently discovered how to make gold nanoparticles using gold salts, soybeans and water. Katti's research has garnered attention worldwide and the environmentally-friendly discovery could have major applications in several disciplines.

Gold nanoparticles are tiny pieces of gold, so small they cannot be seen by the naked eye. Researchers believe gold nanoparticles will be used in cancer detection and treatment, the production of "smart" electronic devices, the treatment of certain genetic eye diseases and the development of "green" automobiles.

While the nanotechnology industry is expected to produce large quantities of nanoparticles in the near future, researchers have been worried about the environmental impact of typical production methods. Commonly, nanoparticles have been produced using synthetic chemicals. Katti's process, which uses only naturally occurring elements, could have major environmental implications for the future. Since some of the chemicals currently used to make nanoparticles are toxic to humans, Katti's discovery also could open doors for additional medical fields. Having a 100-percent natural "green" process could allow medical researchers to expand the use of the nanoparticles.

"Typically, a producer must use a variety of synthetic or man-made chemicals to produce gold nanoparticles," said Katti, professor of radiology and physics in the School of Medicine and College of Arts and Science at MU, senior research scientist at the MU Research Reactor (MURR) and director of the University of Missouri Cancer Nanotechnology Platform. "To make the chemicals necessary for production, you need to have other artificial chemicals produced, creating an even larger, negative environmental impact. Our new process only takes what nature has made available to us and uses that to produce a technology already proven to have far-reaching impacts in technology and medicine."

The new discovery has created a large positive response in the scientific community. Researchers from as far away as Germany have commented on the discovery's importance and the impact it will have in the future.

"Dr. Katti's discovery sets up the beginning of a new knowledge frontier that interfaces plant science, chemistry and nanotechnology," said Herbert W. Roesky, a professor and world-renowned chemist from the University of Goettingen in Germany.

Katti and his long-time collaborator and colleague, Raghuraman Kannan, assistant professor of radiology, sowed the seeds of Nanomedicine at MU through their groundbreaking discoveries in 2004. MU now has an internationally recognized research program in nanomedicine. The research was funded by grants from the National Cancer Institute and the National Institutes of Health.

Katti's research in the field of nanomedicine, biomedicine, cancer diagnostics/therapeutics and optical imaging have earned him numerous awards and recognition. The latest honor bestowed upon Katti is the "Outstanding Missourian" award, which he will receive Tuesday, March 4 in Jefferson City. The award is presented as "acknowledgement of the most accomplished citizens of the state of Missouri" and for making an "outstanding contribution to his state or nation." He is scheduled to receive the award at the beginning of the morning session of the Missouri House of Representatives.

In a recent interview, he expressed his gratefulness for the recognition, but attributes much of the credit to others, including his wife, Kavita Katti, who is a senior research chemist at MU, and his parents in India who supported him in his education.

"I feel excited about the recognition, and I attribute my selection to our institution, my research group and my collaborators," Katti said. "This award is the culmination of several factors, including departmental leadership, a plethora of outstanding collaborators at MU, the deans and, of course, the chancellor. A faculty member could not possibly succeed just by his or her own efforts. We have been very blessed with this team effort. I am very excited to receive this recognition. I think it speaks highly of our school and of our nanomedicine program."

####

About COLUMBIA, MO
The University of Missouri was founded in 1839 as the first public university west of the Mississippi River and the first state university in Thomas Jefferson's Louisiana Purchase territory. MU provides all the benefits of two universities in one — it's a major land-grant institution and Missouri's largest public research university.

Considered one of the nation's top-tier institutions, Mizzou has a reputation of excellence in teaching and research, and is the flagship campus of the four-campus University of Missouri System. It is one of only 34 public universities, and the only public institution in Missouri, to be selected for membership in the Association of American Universities. MU offers more than 265 degree programs — including 30 online degree options — and is designated as comprehensive doctoral with medical/veterinary by the Carnegie Foundation for the Advancement of Teaching.

For more information, please click here

Contacts:
Bryan E. Jones

573-882-9144

Copyright © University of Missouri-Columbia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

New electronic stent could provide feedback and therapy — then dissolve May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Discoveries

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Announcements

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Automotive/Transportation

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

What makes cancer cells spread? New device offers clues May 19th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

International and U.S. Students and Teachers Headed to Toronto for 34th Annual International Space Development Conference®: Students competed in prestigious NSS-NASA Ames Space Settlement Design Contest May 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project