Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Energetic nanoparticles swing sunlight into electricity

Light can be converted to electricity via plasmon resonances in nanoparticles, by: A: a far field effect which prolongs the optical path through the cell, B: a near field effect which locally enhance the energy conversion in the solar cell, or C: a creation of energy rich charge carriers which are transferred to the solar cell. Image: Carl Hägglund
Light can be converted to electricity via plasmon resonances in nanoparticles, by: A: a far field effect which prolongs the optical path through the cell, B: a near field effect which locally enhance the energy conversion in the solar cell, or C: a creation of energy rich charge carriers which are transferred to the solar cell. Image: Carl Hägglund

Abstract:
The electrons in nanoparticles of noble metal oscillate together apace with the frequency of the light. This phenomenon can be exploited to produce better and cheaper solar cells, scientists at Chalmers University of Technology have shown.

Energetic nanoparticles swing sunlight into electricity

GÖTEBORG, SWEDEN | Posted on February 22nd, 2008

Electricity-generating solar cells are one of the most attractive alternatives for creating a long-term sustainable energy system, but thus far solar cells have not been able to compete economically with fossil fuels. Researchers are now looking at how nanotechnology can contribute in bringing down the cost.

Solar cells are constructed of layers that absorb sunlight and convert it to electrical current. Thinner solar cells can yield both cheaper and more plentiful electricity than today's cells, if their capacity to absorb sunlight is optimized. One way to enhance the absorption of the solar harvesting material in a solar cell is to make use of nanoparticles of noble metal. Carl Hägglund at Chalmers has looked at how this can be done in his recently completed doctoral dissertation.

The particles involved have special optical properties owing to the fact that their electrons oscillate back and forth together at the same rate as the frequency of the light, that is, the color of the light. The particles catch the light as tiny antennas and via the oscillations the energy is passed on as electricity. These oscillations, plasmons, are very forceful at certain so-called plasmon resonance frequencies, which in turn are influenced by the form, size, and surroundings of the particles.

"What we've done is to make use of nanotechnology to produce the particles and we've therefore been able to determine the properties and see how they can enhance the absorption of light of different colors," says Carl Hägglund.

In the context of solar cells, the great challenge is to efficiently convert the energy that is absorbed in the electron oscillation to energy in the form of electricity.

"We show that it is precisely the oscillations of the particles that yield the energy, how it is transmitted to the material and becomes electricity. It might have turned out, for example, that the oscillations simply generated heat instead," says Carl Hägglund.

The efficiency of the best solar cells today is already very high. The possibility of achieving even better solar cells therefore lies in using less material and in lowering production costs.

With solar cells of specially designed nanoparticles of gold, which is what Carl Hägglund has looked at, a layer only a few nanometers thick is required for the particles to be able to absorb light in an efficient way.

The dissertation examines the effect of nanoparticles of noble metal on two different types of solar cells, which can be said to represent two extremes. In one type of solar cell the light is absorbed in molecules on a surface, and in the other type deep inside the material. The experimental and theoretical results show that the particles can help transmit the light's energy to useful electricity in several different ways and that it's possible to enhance the absorption of solar cells both on the surface and deep inside via different mechanisms.

This work has been carried out within the framework of a materials science research program (PhotoNano) funded by the Swedish Foundation for Strategic Research.

The dissertation, titled "Nanoparticle plasmon influence on the charge carrier generation in solar cells", will be publicly defended on February 22 at 10:15 a.m. in Hall HA2, Hörsalsvägen 4, Chalmers University of Technology, Göteborg, Sweden.

####

About Chalmers University of Technology
Chalmers is a university of technology in which research and teaching are conducted on a broad front within technology, natural science and architecture. Our inspiration lies in the joy of discovery and the desire to learn. Underlying everything we do is a wish to contribute to sustainable development both in Sweden and world-wide.

Our research work deals ultimately with improving people’s conditions, and we often cross traditional boundaries in order to solve the problems of the future. Chalmers has become strong within several areas of science, and some of our research leads its field internationally. We wish in particular to develop and strengthen our research in the fields of bioscience, information technology, environmental science and nanotechnology.

For more information, please click here

Contacts:
Carl Hägglund, Chemical Physics, Department of Applied Physics, Chalmers University of Technology,
phone: +46 (0)31-772 33 76; cell phone: +46
(0)738-154696.


Supervisor: Professor Bengt Kasemo, Chemical Physics, Department of Applied Physics, Chalmers University of Technology,
phone: +46 (0)31 772
33 70; cell phone: +46 (0)708-28 26 01

Copyright © Chalmers University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Discoveries

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Announcements

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Events/Classes

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project