Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Analogue logic for quantum computing

Abstract:
Digital logic, or bits, is the only paradigm for the IT world, and up to now researchers used it almost exclusively to study quantum information processing. But European scientists, in a series of firsts, have proved that an analogue approach is far easier in the quantum world.

Analogue logic for quantum computing

Europe | Posted on February 20th, 2008

Modern computing is digital, a series of 1s and 0s that, once combined, create powerful information processing systems. The system is so simple - on or off, yes or no - that it almost seems dumb. It is that very simplicity that gives digital computing its power. It works very well.

But we have a problem. Silicon circuits are getting so small that they will soon be bumping up against a fundamental physical limit.

"We know very well that, as the miniaturisation of computers continues, at some point the carriers of information will have a size that approaches that of atoms," warns Nicolas Cerf, coordinator of the Covaqial project. "As classical physics becomes inapplicable, we will have to look at quantum mechanics for our future information processing systems."

And that is exactly what quantum scientists have been doing for the last 20 years. Essentially, they have been attempting to reproduce the classical, digital, computer of 1s and 0s in the microscopic world by using particles to carry information as quantum bits, or qubits. Up to now, it really was the only game in quantum town.
Pushing through the tunnel vision of digital information processing. Photo: iStockphoto
Logic, but not as we know it

But this is changing. Covaqial led the charge for a new type of quantum information processing when it began four years ago. It looked at an analogue logic paradigm for the quantum world, using continuous variables instead of 1s and 0s.

"In classical computing, there have been attempts to create an analogue logic, but no major success," notes Cerf. "But it turns out, for a variety of reasons, that using an analogue approach, like continuous variables, might work very well in quantum computing. We felt it was a promising approach, so that is why we started up Covaqial."

Unlike qubits, where one atom or particle carries the information, continuous variables (CV) use an ensemble of atoms or photons to carry the information - the first with matter and the second with light.

Both digital and analogue approaches to quantum information science use the peculiar properties of quantum particles as the ‘signifier' of the information carried, such as the spin of a single electron or the polarisation of a photon for qubits, or the analogue properties of a group of electrons or photons for CV.

"It is the collective property of this group of electrons, or photons, that becomes the information carrier in CV. When you have this many particles you can call it continuous even though there are many very small steps in the information-encoding variable," relates Cerf.

The upshot, though, and what makes CV interesting, is that it is much easier to manipulate, control and experiment with than individual particles. Quantum teleportation using qubits, for example, was described in the early 1990s and proved experimentally five years later. In contrast, teleportation with CV was proved experimentally just one year after it was theorised. All because CVs are much easier to use.
Cat out of the bag

The field looked promising, and after a series of spectacular results Covaqial proved that CV could provide elegant solutions to some of the fundamental issues affecting quantum information processing.

"We achieved the first major result after less than one year. It was an experiment demonstrating quantum memory," explains Cerf. "It's like classical memory, so it is really a prerequisite for the field."

The team demonstrated memory for a light pulse stored in an atomic ‘ensemble' during one millisecond using CV. It might not sound like much, but remember light travels several hundred kilometres in that time. Even if looped in an optical fibre, the energy is so delicate that it would disappear in well under a millisecond. They did this at room temperature, whereas atomic qubits generally need to be super-cooled.

The second result created an optical ‘Schroedinger's cat'. Schrödinger's cat was a thought experiment that illustrated how objects can have two distinct states at the same time, in this case a dead cat and a live cat.

Covaqial created a light pulse - an ensemble of photons - simultaneously in two states. "It is very important for the development of a quantum repeater, which will allow quantum communications to extend to much further distances," Cerf reveals.

Finally, for the first time ever, an experiment demonstrated interspecies quantum teleportation. Teleportation occurs where the state of one particle is moved onto another particle. "It had been done before with photons or atoms, but this is the first time it worked from photons to atoms. These were our most impressive results, but we had many more," notes Cerf.

As a result of their work, CVs are now a hot topic in quantum information processing, and Covaqial propelled Europe to leadership in the field. Now, the team will continue their work in a new European Commission project, COMPAS, starting in a few months.

"Strictly speaking, Covaqial was about quantum communication, but all the results will be essential for the development of quantum computing," explains Cerf. "COMPAS will attack directly the challenges of quantum information processing using CVs."

Further helping to usher in the era of the analogue quantum computer.

####

About ICT Results
ICT Results is an editorial service created for the European Commission to showcase EU-funded ICT research and activities.

For more information, please click here

Contacts:
The ICT Information Desk Office
BU25 02/160
B-1049 Brussels, Belgium
Fax: +32 2 296 83 88

Copyright © ICT Results

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Quantum Computing

Quantum manipulation: Filling the gap between quantum and classical world April 14th, 2014

Rainbow-catching waveguide could revolutionize energy technologies: By slowing and absorbing certain wavelengths of light, engineers open new possibilities in solar power, thermal energy recycling and stealth technology March 28th, 2014

Could Diamonds Be A Computer’s Best Friend? Landmark experiment reveals the precious gem’s potential in computing March 24th, 2014

Waterloo, Technion Partner to Advance Research, Commercialization March 19th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Economics = MC2 -- A portrait of the modern physics startup: Successful companies founded by physicists often break the Silicon Valley model, according to new American Institute of Physics report April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE