Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Nanotube Findings Give Boost to Potential Biomedical Applications

Abstract:
Carbon nanotubes have shown real promise as highly accurate vehicles for delivering antitumor agents into malignant cells, but a dearth of data about what happens to the tubes after they discharge their medical payloads has been a major stumbling block to progress. Now, two studies at the Center for Cancer Nanotechnology Excellence Focused on Therapy Response have revealed some reassuring answers after months of tracking the tiny tubes inside mice.

New Nanotube Findings Give Boost to Potential Biomedical Applications

Bethesda , MD | Posted on February 19th, 2008

Studies in mice had already shown that most nanomaterials tend to accumulate in organs such as the liver and spleen, which was a concern because no one knew how long they could linger there. But fears that the tiny tubes might be piling up in vital organs can now be put to rest, according to research study leader Hongjie Dai, Ph.D., and colleagues at Stanford University and the Center for Cancer Nanotechnology Excellence Focused on Therapy Response.

Dr. Dai and his group found that carbon nanotubes leave the body primarily through the feces, some by way of the urine. "That's nice to know," Dai said. "This now proves that they do get out of the system."

Even more important, the data from this study, which were published in the Proceedings of the National Academy of Sciences of the United States of America, should also allay worries that the nanotubes, by simply remaining in the organs for a long time, would prove toxic to the mouse. "None of the mice died or showed any anomaly in the blood chemistry or in the main organs," said Dr. Dai. "They appear very healthy, and they are gaining weight just like normal mice. There's no obvious toxicity observed."

The key to this study was the Stanford investigators' use of Raman spectroscopy to monitor the location and concentration of carbon nanotubes in the mouse body. Carbon nanotubes yield strong and characteristic Raman signals. Previous detection methods that relied on attaching fluorescent labels or spectroscopic tags to the nanotubes had yielded unreliable results, largely because the stability of the carbon nanotube-fluorescent tag construct was too short to reveal the ultimate fate of the nanotubes.

Using Raman spectroscopy also enabled the investigators to monitor how long the nanotubes remained in circulation, a key pharmacological property. These pharmacokinetic data showed that coating carbon nanotubes with polyethylene glycol (PEG) produced nanotubes with circulating lifetimes of about 10 hours, which is suitable for drug and imaging agent delivery purposes.

In a second study conducted by Jin Miyawaki, Ph.D., Kyushu University, and colleagues in Japan found that pure single-walled carbon nanohorns, which are similar to carbon nanotubes, are also nontoxic over a 3-month period, even at excessive doses. In a study published in the journal ACS Nano, the investigators presented data showing that instilling carbon nanohorns directly into the lungs of rats produced no toxicity; oral doses were not toxic except at levels exceeding 2 grams of nanohorn per kilogram of body weight, far higher than any exposure expected under reasonable circumstances. Mutagenesis assays suggested that carbon nanohorns are not carcinogenic, either.

Dr. Dai and colleagues' work is detailed in the paper "Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy." This work was supported by the National Cancer Institute's (NCI) Alliance for Nanotechnology in Cancer. An abstract of this paper is available through PubMed.

The work by Dr. Miyawaki and colleagues appears in the paper "Toxicity of single-walled carbon nanohorns." Investigators from NEC Corporation and Meijo University also participated in this study. An abstract is available at the journal's Web site.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:


National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Abstract-“Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy.”

Abstract-“Toxicity of single-walled carbon nanohorns.”

Related News Press

News and information

ANU invention to inspire new night-vision specs December 7th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Nanotubes/Buckyballs/Fullerenes

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Discoveries

ANU invention to inspire new night-vision specs December 7th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Announcements

ANU invention to inspire new night-vision specs December 7th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project