Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Engineers demonstrate nanotube wires operating at speed of commercial chips

Abstract:
Integrated circuits, such as the silicon chips inside all modern electronics, are only as good as their wiring, but copper conduits are approaching physical performance limitations as they get thinner. Chipmakers have hoped that carbon "nanotubes" would allow them to continue using thinner wiring as they pack more devices into chips, but no one had demonstrated nanotube wires working on a conventional silicon chip. In a paper published online today by the journal Nano Letters, electrical engineers at Stanford University and Toshiba report using nanotubes to wire a silicon chip operating at speeds comparable to those of commercially available processors and memory.

Engineers demonstrate nanotube wires operating at speed of commercial chips

Palo Alto, CA | Posted on February 15th, 2008

"This is the first time anyone has been able to show digital signals going through nanotubes at 1 gigahertz [a billion times a second]," said H.-S. Philip Wong, a professor of electrical engineering at Stanford and a co-author of the report. "There had been a lot of expectations that nanotubes could do this, but no experimental proof so far."

At stake is the continuation of the famous Moore's Law, which calls for doubling the number of transistors on a chip every two years. The increase in transistors correlates strongly with greater computing power but also requires thinner and thinner wiring. The advance reported by the Stanford and Toshiba team shows that nanotubes are capable not only of connecting transistors at industrially relevant speed but of doing so in real circuits that use materials, designs and manufacturing processes compatible with those that chipmakers use today, added Gael Close, an electrical engineering doctoral student and the paper's lead author.

Joining Close and Wong in the research were Shinichi Yasuda and Shinobu Fujita of Toshiba's Advanced Semiconductor Laboratory in Japan and Bipul Paul of Toshiba America Research in San Jose.

The silicon chip Close and his collaborators built is an array of 256 circuits called "ring oscillators," which are industry-standard circuits for testing the speed of chips. Including other control circuitry that allowed for selectively operating each of the 256 oscillators, the chip comprised a total of 11,000 transistors in an area one hundredth of a square inch.

When designing the chip, Close, Wong and the Toshiba researchers purposely left one wire of each oscillator unconnected so the circuit is not completely wired up. After the semiconductor foundry TSMC made the chip, Close then engaged in a few more fabrication steps at the Stanford Nanofabrication Facility to complete the missing connections with the nanotubes. Each nanotube measured between 50 and 100 nanometers (billionths of a meter) in diameter and about 5 millionths of a meter in length.

The nanotubes, purchased from a commercial vendor, were "metallic" in that they were synthesized for maximum electrical conductivity.

The quality of the nanotubes and their connections varied widely, but in the end 19 of the ring oscillators were successfully connected. The nanotubes rested directly above the transistors they were connecting, minimizing electrical capacitance and allowing for the transmission of zeroes and ones at 1.02 gigahertz, or billions of times a second, in the best case. In 16 of the 19 good connections, the oscillators ran at speeds better than 800 megahertz, or millions of cycles a second.

The processors in personal computers currently on the market run at speeds between 2 and 3 gigahertz. The processor in an iPhone reportedly runs at about 700 megahertz.

Consumers should not expect the research to mean that they'll be putting nanotubes in their pockets next year, the researchers cautioned. Many improvements are needed for nanotube wiring to enter commercial use, Wong said, including more consistent nanotube purity and size, and more reliably made connections. The nanotubes in Close's chip were about the same size as the copper wires used today. Transmission of even higher-frequency signals in even thinner nanotubes will require improvements in both nanotube quality and circuit design.

But Wong and Close both said the research provides the most definitive confirmation to date that nanotubes can be the heir apparent to copper that the industry needs.

"This is a significant step but it is still very much at the proof of concept level," Close said. "The industry has been waiting for this kind of a demonstration to really move forward."

In addition to Toshiba, support for the research came from the semiconductor industry's Interconnect Focus Center, one of five research centers funded under the Focus Center Research Program, which is a Semiconductor Research Corporation program; and Close's Intel Graduate Fellowship.

David Orenstein is the communications and public relations manager at the Stanford School of Engineering.

####

For more information, please click here

Contacts:

Stanford News Service
425 Santa Teresa St.
Stanford, CA 94305-2245

(650) 723-2558 (main number)
(650) 725-0247 (fax)

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Chip Technology

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Electrons and liquid helium advance understanding of zero-resistance: Study of electrons on liquid helium systems sheds light on zero-resistance phenomenon in semiconductors February 2nd, 2016

Nanoelectronics

Cornell researchers create first self-assembled superconductor February 1st, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Nanosheet growth technique could revolutionize nanomaterial production February 1st, 2016

Discoveries

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Announcements

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic