Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Tiny Material, Big Risk

Images taken by a transmission electron microscope (TEM), of an individual carbon nanotube mounted on a tungsten tip. In a), the end of the tungsten tip (dark) and the complete nanotube (light) can be seen. Picture b) shows the apex of the nanotube under larger magnification. The apex has a radius of just 2.7 nanometers. Photo: Philips
Images taken by a transmission electron microscope (TEM), of an individual carbon nanotube mounted on a tungsten tip. In a), the end of the tungsten tip (dark) and the complete nanotube (light) can be seen. Picture b) shows the apex of the nanotube under larger magnification. The apex has a radius of just 2.7 nanometers. Photo: Philips

Abstract:
Slight modifications to nanomaterials can be the difference between medical marvel and medical hazard. The latest find by two UD researchers show possible damage to DNA.

Tiny Material, Big Risk

DAYTON, OH | Posted on February 14th, 2008

Liming Dai, a University of Dayton chemical and materials engineering professor, and Yiling Hong, a UD assistant biology professor have made a breakthrough in determining the safety of microscopic carbon materials sometimes used for gene, drug or cancer therapies.

When they introduced carbon nanotubes into mouse embryonic stem cells, they found that carbon nanotubes could damage DNA.

"DNA is genetic material. If the DNA is mutated, the mutation could be passed on to future generations (offspring)," Hong said.

Dai said it's important to understand why certain nanomaterials are toxic and how to control their toxicity, because more people are being exposed to nanomaterials. Slight modifications to their structures or surfaces can be the difference between a medical marvel and medical hazard.

Nanomaterials, the family which includes carbon nanotubes, can be as much as 8,000 times smaller than a strand of hair. They already are used in cosmetics, stain-resistant fabric and ointments.

The next step is to identify ways to create safer carbon nanotubes through surface modification and examine how other nanomaterials work in the entire bodies of animals, according to Hong.

Lin Zhu and Dong Wook Chang, in UD's biology and chemical and materials engineering departments, respectively, also helped with the study. The American Chemical Society's Nano Letters published the group's findings in November.

Nanowerk said the study is the first of its kind evaluating the potential toxicity of a nanomaterial on the molecular level. DNA is at the molecular level, which is smaller than the cellular level.

In previous work with biocompatibility of other nanomaterials on the cellular level last year, Dai published findings that carbon nanodiamonds were safe. Dai performed that research with UD graduate student Amanda Schrand, Saber Hussain of the Air Force Research Lab and Eiji Osawa of Japan's NanoCarbon Institute Ltd. They received support from Japan's New Energy and Industrial Technology Development Organization, the Oak Ridge Institute for Science and Education, the Dayton Area Graduate Studies Institute and the National Science Foundation.

####

About University of Dayton
UD ranks second in the nation for industry-and government-funded materials research and is the largest private university in Ohio.

For more information, please click here

Contacts:
Shawn Robinson
937-229-3391

Copyright © University of Dayton

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Safety-Nanoparticles/Risk management

Sustainable Nanotechnologies Project November 20th, 2014

A gut reaction November 19th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Plastic nanoparticles also harm freshwater organisms October 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE