Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > No limits to silicon integrated circuits

New semiconductor microlasers with silicon wave guides will speed up data transfer
© Shutterstock
New semiconductor microlasers with silicon wave guides will speed up data transfer © Shutterstock

Abstract:
Microchip processing technology is being updated at faster and faster rates in our age of silicon chip wizardry. By the time you unpack your smart new laptop or digital camera the technology that went into making it is already becoming outdated. But a solution to the problem is now at hand. Researchers working on a project called PICMOS, with EU funding of EUR 2.5 million, have developed new technologies to produce and combine semiconductor microlasers with silicon wave guides for new, efficient and powerful optical connections.

No limits to silicon integrated circuits

Europe | Posted on February 13th, 2008

Traditionally tiny copper wires connect different areas of integrated circuits, but these are limited in their use as they will soon start limiting microchip processing speeds. Since the birth of microchip technology, the miniaturisation of microchips has continued relentlessly with the number of transistors able to be fitted into an integrated circuit doubling on average every two years.

Microchips that are based on silicon wafers are now nearing their limits because the physical properties of near nanoscale silicon integrated circuits are beginning to interfere with their performance. The speed of data transfer in the integrated circuits is slowing down because the data is currently being sent as electrons through copper wires known as copper interconnects.

'Copper wire interconnects place serious limitations on the performance of silicon integrated circuits,' Dries Van Thourhout from Ghent University's Photonics Research Group and Belgium's IMEC, a micro- and nano-electronics research centre, told ICT Results.

'It is hard to transmit data down these interconnects in a sufficiently fast power-efficient way. It is a problem of bandwidth and copper will not be able to cope with the processing power of tomorrow's microchips.'

Using optical connects would be far more convenient than copper ones as opticals use light instead of electrons to relay data. They also have the capacity to be far more efficient at transmitting data, but using the same or less power. Instead of traveling along copper wires, they travel along wave guides that are made of silicon rather than glass.

'Lots of research has shown that you can etch wave guides for photons into silicon,' Van Thourhout is quoted as saying. 'This is great because you are using the same materials and fabrication technologies as you do to make integrated circuits. But there is one significant drawback: it is extremely hard to get light out of silicon.'

Part of the project research involved the development of indium-phosphate lasers etched with a diameter of just 7µm which is small enough to integrate several thousand onto a 2cm x 2cm silicon chip. These could be used in many ways, for example in miniature optical sensors such as strain detectors or they could be used to build inexpensive, but powerful optical biosensors.

At the moment the cost of producing the lasers is too high for mass production although the results of the research are encouraging. A follow-up project called WADIMOS which is also EU-funded is to carry on the PICMOS research.

####

For more information, please click here

Contacts:
DIRECTORATE-GENERAL FOR RESEARCH
European Commission
SDME 2/2
B-1049 Brussels - Belgium
http://ec.europa.eu/dgs/research/index_en.html

Copyright © European Commission

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Chip Technology

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Optical Computing

Nanoparticles Break the Symmetry of Light October 6th, 2014

Speed at its limits September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE