Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > One electron makes all the difference

Abstract:
A research team from the department of condensed matter physics of the Universidad Autonoma de Madrid working in collaboration with the research group lead by professor Christian Schoenenberger at the Basilea university in Switzerland, have discovered that just an electron sets the conductive properties of a carbon nanotube.

One electron makes all the difference

Madrid, Spain | Posted on February 13th, 2008

Since their discovery in 1991, carbon nanotubes have continually fascinated physicists and chemists with their amazing electronic and mechanical properties.

These cylindrical molecules with a radius of a few Angstroms (1×10-10 meters) and with lengths of up to several micrometers (1×10-6 meters) have endless applications inside different scientific fields from nanoelectronics to material science, and are used by scientists to study a wide range of physical phenomena that only take place at a nanometric scale. The combination of nanotubes and other materials form hybrid structures and these are of particular interest. For example, carbon nanotubes connected to superconductive electrodes (materials that offer no electrical resistance at low temperatures) are currently being used to study exotic physical phenomena like the Josephson Effect. This Nobel Prize winning discovery made by physicist Brian D. Josephson in 1973 consists of the almost magic effect of producing an electrical current in a superconductive junction without the application of a voltage.

In the last two three years several research groups have demonstrated that in a carbon nanotube held in between superconducting electrodes, the Josephson effect can be controlled at will, making possible a superconductive version of a transistor. This discovery has endless possibilities, most of which have barely started to be investigated.

A research group from the UAM working in collaboration with a research team lead by Christian Schoenenberger of Basilea University, has recently published an article in the Physical Review Letters, where a new phenomenon that takes place within these nanotube-superconductor structures has been described.

Demonstrating that carbon nanotubes truly are an endless supply of new physical phenomena, they have discovered that when a voltage is applied to these hybrid structures, the electric current that flows depends greatly on the number of electrons that are present at the nanotube, and furthermore, whether this number is even or odd has a drastic impact. This new transport phenomenon is caused by subtle interactions between the Spins (magnetic field produced by the electrons as they rotate) of the electrons in the carbon nanotubes - a characteristic which depends on their number and the conducting electrons in the superconductor.

####

Copyright © Universidad Autonoma de Madrid

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project