Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > One electron makes all the difference

Abstract:
A research team from the department of condensed matter physics of the Universidad Autonoma de Madrid working in collaboration with the research group lead by professor Christian Schoenenberger at the Basilea university in Switzerland, have discovered that just an electron sets the conductive properties of a carbon nanotube.

One electron makes all the difference

Madrid, Spain | Posted on February 13th, 2008

Since their discovery in 1991, carbon nanotubes have continually fascinated physicists and chemists with their amazing electronic and mechanical properties.

These cylindrical molecules with a radius of a few Angstroms (110-10 meters) and with lengths of up to several micrometers (110-6 meters) have endless applications inside different scientific fields from nanoelectronics to material science, and are used by scientists to study a wide range of physical phenomena that only take place at a nanometric scale. The combination of nanotubes and other materials form hybrid structures and these are of particular interest. For example, carbon nanotubes connected to superconductive electrodes (materials that offer no electrical resistance at low temperatures) are currently being used to study exotic physical phenomena like the Josephson Effect. This Nobel Prize winning discovery made by physicist Brian D. Josephson in 1973 consists of the almost magic effect of producing an electrical current in a superconductive junction without the application of a voltage.

In the last two three years several research groups have demonstrated that in a carbon nanotube held in between superconducting electrodes, the Josephson effect can be controlled at will, making possible a superconductive version of a transistor. This discovery has endless possibilities, most of which have barely started to be investigated.

A research group from the UAM working in collaboration with a research team lead by Christian Schoenenberger of Basilea University, has recently published an article in the Physical Review Letters, where a new phenomenon that takes place within these nanotube-superconductor structures has been described.

Demonstrating that carbon nanotubes truly are an endless supply of new physical phenomena, they have discovered that when a voltage is applied to these hybrid structures, the electric current that flows depends greatly on the number of electrons that are present at the nanotube, and furthermore, whether this number is even or odd has a drastic impact. This new transport phenomenon is caused by subtle interactions between the Spins (magnetic field produced by the electrons as they rotate) of the electrons in the carbon nanotubes - a characteristic which depends on their number and the conducting electrons in the superconductor.

####

Copyright © Universidad Autonoma de Madrid

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Nanotubes/Buckyballs/Fullerenes

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Nanoelectronics

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

Discoveries

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Announcements

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic