Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NEC Succeeds in Fabrication of CNT Transistor Using Coating Process; Confirms Feasibility of Environmentally Friendly Electronic Devices using CNTs

Abstract:
NEC Corporation today announced the successful development of a carbon nanotube (CNT) transistor using a coating process. The basic operation of the new transistor with advanced characteristics has been verified, confirming its application in the printed electronics field.

NEC Succeeds in Fabrication of CNT Transistor Using Coating Process; Confirms Feasibility of Environmentally Friendly Electronic Devices using CNTs

Tokyo, Japan | Posted on February 12th, 2008

Main features of the new CNT transistors
(1) Based on an NEC device model, design guidelines were established to verify the relationship between transistor characteristics and the length and density of the CNT when the CNT channel* is created and to increase CNT transistor performance.
(2) A channel coating-process technology, capable of accurately controlling the density of the CNT, was also developed. CNT transistors were produced based on the new design guidelines and technology. Despite performance variation, extremely high mobility - the speed at which electrons move in the material - for a transistor manufactured using this type of coating process was achieved.

The demand for electronics has rapidly increased in recent years along with environmental concern. This has brought about the need for more advanced electronic products that simultaneously achieve reduced environmental impact.

Organic transistors and other printed electronics are one potential solution to this problem. Printed electronics' technologies are unique in that they allow transistors to be formed by printing directly onto the substrate. This means that manufacturing processes can be dramatically simplified in comparison to conventional semiconductors; waste materials generated through manufacturing processes can be reduced, and CO2 emissions can be reduced by more than 90%.

The channel materials of conventional research organic transistors generally demonstrate little mobility and are therefore considered unsuitable for electronic devices with high-speed operation. The basic operations for a transistor formed using this coating process were confirmed for the newly developed CNT transistor, which adopts CNTs as its channel material to allow 100 times greater mobility than regular organic transistors. The research results prove the potential of CNTs as a core transistor material, even in the field of printed electronics. Further research is expected to show the potential to dramatically expand the scope of printed electronics applications.

NEC views the new CNT transistor technology as key to the development of electronic devices with minimal environmental impact, and will continue to proactively conduct research in this area to realize environmentally-sound products.

The results of this research will be presented at "nano tech 2008 International Nanotechnology Exhibition & Conference" being held at Tokyo Big Sight from February 13 to 15.

*Channel: The part of a transistor that connects the electrodes. The faster the electrons move in the channel, the faster the electronic device can operate.

####

About NEC Corporation
NEC Corporation (TSE: 6701) is one of the world's leading providers of Internet, broadband network and enterprise business solutions dedicated to meeting the specialized needs of its diverse and global base of customers. NEC delivers tailored solutions in the key fields of computer, networking and electron devices, by integrating its technical strengths in IT and Networks, and by providing advanced semiconductor solutions through NEC Electronics Corporation. The NEC Group employs more than 150,000 people worldwide.

For more information, please click here

Contacts:
Diane Foley
NEC Corporation

+81-3-3798-6511

Copyright © NEC Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

Chip Technology

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Nanotubes/Buckyballs/Fullerenes

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Nanoelectronics

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Supersonic spray yields new nanomaterial for bendable, wearable electronics: Film of self-fused nanowires clear as glass, conducts like metal November 23rd, 2016

Discoveries

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Announcements

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project