Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NEC Succeeds in Fabrication of CNT Transistor Using Coating Process; Confirms Feasibility of Environmentally Friendly Electronic Devices using CNTs

Abstract:
NEC Corporation today announced the successful development of a carbon nanotube (CNT) transistor using a coating process. The basic operation of the new transistor with advanced characteristics has been verified, confirming its application in the printed electronics field.

NEC Succeeds in Fabrication of CNT Transistor Using Coating Process; Confirms Feasibility of Environmentally Friendly Electronic Devices using CNTs

Tokyo, Japan | Posted on February 12th, 2008

Main features of the new CNT transistors
(1) Based on an NEC device model, design guidelines were established to verify the relationship between transistor characteristics and the length and density of the CNT when the CNT channel* is created and to increase CNT transistor performance.
(2) A channel coating-process technology, capable of accurately controlling the density of the CNT, was also developed. CNT transistors were produced based on the new design guidelines and technology. Despite performance variation, extremely high mobility - the speed at which electrons move in the material - for a transistor manufactured using this type of coating process was achieved.

The demand for electronics has rapidly increased in recent years along with environmental concern. This has brought about the need for more advanced electronic products that simultaneously achieve reduced environmental impact.

Organic transistors and other printed electronics are one potential solution to this problem. Printed electronics' technologies are unique in that they allow transistors to be formed by printing directly onto the substrate. This means that manufacturing processes can be dramatically simplified in comparison to conventional semiconductors; waste materials generated through manufacturing processes can be reduced, and CO2 emissions can be reduced by more than 90%.

The channel materials of conventional research organic transistors generally demonstrate little mobility and are therefore considered unsuitable for electronic devices with high-speed operation. The basic operations for a transistor formed using this coating process were confirmed for the newly developed CNT transistor, which adopts CNTs as its channel material to allow 100 times greater mobility than regular organic transistors. The research results prove the potential of CNTs as a core transistor material, even in the field of printed electronics. Further research is expected to show the potential to dramatically expand the scope of printed electronics applications.

NEC views the new CNT transistor technology as key to the development of electronic devices with minimal environmental impact, and will continue to proactively conduct research in this area to realize environmentally-sound products.

The results of this research will be presented at "nano tech 2008 International Nanotechnology Exhibition & Conference" being held at Tokyo Big Sight from February 13 to 15.

*Channel: The part of a transistor that connects the electrodes. The faster the electrons move in the channel, the faster the electronic device can operate.

####

About NEC Corporation
NEC Corporation (TSE: 6701) is one of the world's leading providers of Internet, broadband network and enterprise business solutions dedicated to meeting the specialized needs of its diverse and global base of customers. NEC delivers tailored solutions in the key fields of computer, networking and electron devices, by integrating its technical strengths in IT and Networks, and by providing advanced semiconductor solutions through NEC Electronics Corporation. The NEC Group employs more than 150,000 people worldwide.

For more information, please click here

Contacts:
Diane Foley
NEC Corporation

+81-3-3798-6511

Copyright © NEC Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Chip Technology

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Nanoelectronics

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

Tungsten offers nano-interconnects a path of least resistance: Crystalline tungsten shows insight and promise in addressing the challenges of electrical interconnects that have high resistivity at the nanoscale October 4th, 2017

Discoveries

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Announcements

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project