Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New devices to boost nematode research on neurons and drugs

UO biologist, neuroscientist Shawn Lockery, shown in his lab,  led the development of two microfluidic devices that improve upon older cumbersome tools used to study C. elegans.
Photo by Jim Barlow
UO biologist, neuroscientist Shawn Lockery, shown in his lab, led the development of two microfluidic devices that improve upon older cumbersome tools used to study C. elegans.
Photo by Jim Barlow

Abstract:
University of Oregon-led project leads to the creation of two nanotech-driven tools for biologists, neuroscientists

New devices to boost nematode research on neurons and drugs

EUGENE, OR | Posted on February 6th, 2008

A pair of new thin, transparent devices, constructed with soft lithography, should boost research in which nematodes are studied to explore brain-behavior connections and to screen new pharmaceuticals for potential treatment of parasitic infections in humans, report 10 scientists at three institutions.

The tools -- an artificial soil device and a waveform sampler device, both of which can be held easily in a human hand -- are detailed in a paper appearing online ahead of regular publication by the Journal of Neurophysiology.

The devices take advantage of a microfluidic fabrication technique, which allows for the presence of channels, chambers or ports, for gas permeability and transparency and for using fluids to deliver stimuli with precision. The major improvement over previous tools is that these new ones are agarose-free, using micron-scale channels and pillars that mimic real soil particles.

The newly reported devices provide a near natural environment for soil-dwelling roundworms (Caenorhabditis elegans, or C. elegans) that measure barely a millimeter in length. The nematodes move normally, but slightly compressed so that highly sensitive microscopes can be used to monitor individual fluorescent-injected neurons in real time during experiments.

"There is a commonality between these devices that is really going to help us understand how the nervous system works," said lead researcher Shawn Lockery, a professor of biology and member of the Institute of Neuroscience at the University of Oregon.

"The artificial soil device consists of a hexagonal array of microscopic pillars sandwiched between a glass cover slip and a bulk material from which the pillars protrude," Lockery said. "The worm wanders around in a one-centimeter square area as a river of mostly water flows through it. We can change the solution the nematode is exposed to in ways that are relevant to the research that is being conducted." (See movie of a nematode in this device)

For instance, researchers can manipulate the levels of sodium chloride and oxygen in the water being injected into the devices.

As a proof of principle, researchers had to show that the behavior of the nematodes is essentially normal in the new devices, meaning that the worms crawl like they do on an agar surface. "But nematodes don't live on exposed agar surfaces in real life," Lockery said. Instead, they are found within soil and easily collected in the wild in rotting fruit.

"The beauty of this system is that it reproduces standard laboratory behavior, but it does so in a context that is probably more normal in terms of the worms' real-life environment," he said. "You get forward and reverse locomotion, and the nematodes also do the omega turn, in which a worm's head bends around to touch the tail during forward locomotion, forming a shape like the Greek omega."

The waveform device features 18 different channels, with each divided into domains with unique amplitudes and wavelengths to manipulate how a nematode moves. Instead of using posts to mimic real soil, depressions or channels provide natural areas -- even some that don't occur in nature -- for the nematodes to crawl through. "This ability to change the channels but still allow the worms to move about proved the principle in this case," Lockery said. "What we found from this is that these animals are remarkably adaptable to a wide range of situations."

The artificial soil device, Lockery said, will help to study how brains generally process sensory information and for high-through-put screening of new drugs for their biological effects. Such research, he said, could lead to new treatments for some two billion people infected annually by parasitic nematodes, as well as new tools to reduce nematode-caused losses in world agriculture.

The waveform device could enhance research on brain-behavior connections. C-elegans have only 302 neurons, compared to 100 billion neurons in the human brain, Lockery said. At least 50 percent of the proteins in the nematode brain are identical to those in human brains. "C. elegans is the only animal for which we have a complete anatomical reconstruction of the nervous system -- a complete wiring diagram of the brain. This greatly accelerates analyses of brain function in this organism," he said.

The National Institute of Mental Health and the National Science Foundation funded the research.

In addition to Lockery, four other co-authors of the paper are at the UO. They are Kristy J. Lawton, Serge Faumont, research associates, and postdoctoral researcher Tod R Thiele, all in the UO Institute of Neuroscience, and biology doctoral student Kathryn E McCormick. The other six co-authors are Joseph C. Doll and Sarah Coulthard, mechanical engineering graduate students at Stanford University; Beth L. Pruitt, professor of mechanical engineering at Stanford; Nikolaos Chronis, professor of mechanical engineering and biomedical engineering at the University of Michigan; and Miriam B. Goodman, professor of molecular and cellular physiology at Stanford.

####

About University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the United States and Canada. Membership in the AAU is by invitation only. The University of Oregon is one of only two AAU members in the Pacific Northwest.

For more information, please click here

Contacts:
Contact:
Jim Barlow
541-346-3481


Source:
Shawn Lockery
professor of biology
541-346-4590

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See movie of a nematode in this device

First movie of worm in the waveform device

Second movie of worm in the waveform device

Related News Press

News and information

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Videos/Movies

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

Microfluidics/Nanofluidics

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Nanoscale assembly line August 29th, 2014

Nanomedicine

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Nanoscience makes your wine better September 17th, 2014

Discoveries

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Announcements

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Research partnerships

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Printing/Lithography/Inkjet/Inks

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE