Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Simultaneous optical and electronic measurements on same molecule

Abstract:
Rice scientists make breakthrough in single-molecule sensing

Simultaneous optical and electronic measurements on same molecule

Houston, TX | Posted on February 6th, 2008

In a study that could lay the foundation for mass-produced single-molecule sensors, physicists and engineers at Rice University have demonstrated a means of simultaneously making optical and electronic measurements of the same molecule.

The research, which is available online, is slated to appear in an upcoming issue of the journal Nano Letters. The experiments were performed on a nanoelectronic device consisting to two tiny electrodes separated by a molecule-sized gap. Using electric current, the researchers measured conduction through single molecules in the gap. In addition, light-focusing properties of the electrodes allowed the researchers to identify the molecule by a unique optical fingerprint.

"We can mass-produce these in known locations, and they have single-molecule sensitivity at room temperature in open air," said study co-author Douglas Natelson, associate professor of physics and astronomy and co-director of Rice's Quantum Magnetism Laboratory (QML). "In principle, we think the design may allow us to observe chemical reactions at the single-molecule level."

While scientists have used electronic and optical instruments to measure single molecules before, Rice's system is the first that allows both simultaneously -- a process known as "multimodal" sensing -- on a single small molecule.

The research sprang from a collaboration between Natelson's group -- where the electrodes were developed -- and Rice's Laboratory for Nanophotonics (LANP), where the simultaneous electronic and optical testing was performed. In research published last year, the two groups explained how the electrodes focus near-infrared light into the molecule-sized gap, increasing light intensity in the gap by as much as a million times. The increased intensity allows the team to collect unique optical signatures for molecules trapped there via a technique called surface enhanced Raman spectroscopy (SERS).

"Our latest results confirm that we have the sensitivity required to measure single molecules," said LANP Director Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry. "That sensitivity, and the multimodal capabilities of this system, gives us a great tool for fundamental science at the nanoscale."

Daniel Ward, a student in Natelson's research group, built the electrodes from tiny gold wires on silicon wafers and performed the critical measurements. The group specializes in studying the electronic and magnetic properties of nanoscale objects -- particles and devices that are built with atomic precision. The devices are so small they can only be seen with certain types of microscopes, and even those provide unclear pictures at best. Natelson said the new multimodal device gives researchers a much clearer idea of what is going on by combining two different kinds of measurements, electronic and optical.

"Conduction across our electrodes is known to depend on a quantum effect called 'tunneling,'" Natelson said. "The gaps are so small that only one or two molecules contribute to the conduction. So when we get conduction, and we see the optical fingerprint associated with a particular molecule, and they track each other, then we know we're measuring a single molecule and we know what kind of molecule it is. We can even tell when it rotates and changes position."

Study co-authors include Jacob Ciszek, James Tour, Yanpeng Wu and Peter Nordlander, all of Rice. The research was sponsored by the National Science Foundation, the Welch Foundation, the Packard Foundation, the Sloan Foundation, the Research Corp., the Defense Advanced Research Projects Agency and the Air Force Office of Scientific Research.

####

About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Sensors

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Discoveries

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Quantum nanoscience

The mysterious 'action at a distance' between liquid containers November 26th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Pseudospin-driven spin relaxation mechanism in graphene November 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE