Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > EoPlex CEO Arthur L. Chait Will Speak on the Topic of Filling the Gap Between Nano and 'Just Plain Miniature' Devices at the IEEE Meeting February 13t

Abstract:
EoPlex CEO Arthur L. Chait Will Speak on the Topic of Filling the Gap Between Nano and 'Just Plain Miniature' Devices at the IEE

EoPlex CEO Arthur L. Chait Will Speak on the Topic of Filling the Gap Between Nano and 'Just Plain Miniature' Devices at the IEEE Meeting February 13t

REDWOOD CITY, CA | Posted on February 3rd, 2008

Arthur L. Chait will present to the IEEE Components, Packaging and Manufacturing Technology Society of Silicon Valley on Wednesday, February 13th, 6:30 p.m. at the Sunnyvale Ramada Inn.

Mr. Chait will note that a great deal of progress has been made in the field of nano and related "tiny" technologies. Unfortunately, the technology to link the tiny world to the macro world has not kept pace. The space between nano and macro is immense. At the nano end are self-assembling structures and semiconductor processes that deal in angstroms; and at the macro end are conventional machining and assembly techniques. Between these two extremes there is a gap where engineers struggle to make low-cost devices with complex 3-D structures containing multiple materials that are "Just Plain Miniature" (JPM). This talk will discuss the meso-scale, HVPF(TM) technology and describe applications including: cell phone antennas, energy harvesters to replace batteries, thermal management devices and microreactors for use in fuel cells. [A full abstract is located in the Appendix below.]

Dinner tickets are $30.00 each. The presentation-only session at 7:30 p.m. is offered at no cost. The Sunnyvale Ramada Inn is located at 1217 Wildwood Avenue, Freeway 101 frontage road, between Lawrence Expressway and Great America Parkway, Sunnyvale, (800.888.3899). Tickets may be purchased through PayPal. Reserve in advance by email to Janis Karklins,

About CPMT

The IEEE Components, Packaging and Manufacturing Technology (CPMT) Society is the leading international forum for scientists and engineers engaged in the research, design and development of revolutionary advances in microsystems packaging and manufacture. The non-profit Society helps professionals through its journals, conferences and workshops, committee activities, local chapter events, educational programs and awards. For more information, visit http://www.cpmt.org/. CPMT is part of the IEEE (Institute of Electrical and Electronics Engineers), the world's largest professional technology association. This non-profit organization develops, defines and reviews electronics and computer science standards. Standards developed by the IEEE often become international standards. Membership includes deans and provosts of every major engineering university and college throughout the world. Membership also includes engineering managers and corporate and financial executives.

About Arthur L. Chait

Arthur L. Chait joined EoPlex in 2002 and was elected Chairman of the Board in 2003. EoPlex is a Silicon Valley start-up that utilizes new technology to manufacture low-cost ceramic-metal components for miniature energy devices, sensors, fuel cells, pumps, packages and circuits. Mr. Chait has raised two rounds of VC funding and the company is now backed by Draper Fisher Jurvetson, ATA Ventures, Labrador Ventures, and Draper Richards. Prior to EoPlex, Mr. Chait was with Solectron (NYSE) as Senior VP Global Accounts where he had revenue responsibility of over $10 billion/year with customers including: IBM, Cisco, Dell, Apple, Ericsson, SUN, Nortel, Nokia, HP/Compaq, Motorola, and Lucent. Mr. Chait's prior experience also includes: GM Zitel (NASDAQ) where he created the software division; Senior VP at Stanford Research Institute with responsibility for 600 staff and all international offices; Booz Allen & Hamilton where he managed assignments in technology strategy for major OEMs; and Dresser/Halliburton where he was a research director in advanced materials. Mr. Chait holds an MBA from the University of Pittsburgh and a BS in Materials Engineering from Rutgers University and was also awarded the Steinmetz Medal from GE.

####

About EoPlex Technologies, Inc.
EoPlex Technologies, Inc. produces components using innovative deposition techniques based on custom printing equipment and proprietary "inks" that carry ceramic, metallic or polymer materials to millions of locations. This allows the manufacture of components with integrated chambers, channels, sensors, circuits, reactors, energy scavengers and other features. Many parts are created simultaneously in large panels and the only tooling required is low-cost printing masks. As a result, there is great flexibility to change designs quickly, allowing fast time to market and even modifications during full production runs. EoPlex is a privately held company based in Redwood City, CA and is backed by ATA Ventures, Draper Fisher Jurvetson, Labrador Ventures and Draper-Richards. For more information, visit http://www.eoplex.com.

APPENDIX Abstract of Presentation by Arthur Chait for CPMT/SCV, February 13, 2008

A great deal of progress has been made in the field of nano and related "tiny" technologies. Unfortunately, the technology to link the tiny world to the macro world has not kept pace. The space between nano and macro is immense. At the nano end are self-assembling structures and semiconductor processes that deal in angstroms; and at the macro end are conventional machining and assembly techniques. Between these two extremes there is a gap where engineers struggle to make low-cost devices with complex 3-D structures containing multiple materials that are "Just Plain Miniature" (JPM).

This gap is often referred to as meso-scale and in this presentation we will consider a meso-scale of roughly 20 microns to 20 millimeters. A number of manufacturing technologies are used in this range including: thin film, lithography, etching, molding, embossing and micromachining. A very successful example is the application of semiconductor processing to create MEMs devices in silicon. MEMs airbag accelerometers and ink jet printer heads account for annual sales of several billion dollars per year.

However, semiconductor technology is not suitable for many other needs. Large, diverse markets exist for miniature devices that cannot be made with semiconductor technology and which require combinations of materials such as ceramics, metals and even polymers. The processes available to meet these needs are limited, costly and, in some cases, don't even exist. This presentation will review some of the existing technologies and then introduce a new technology call High Volume Print Forming (HVPF(TM)) that is able to fill an important portion of this gap.

HVPF(TM) is an additive manufacturing process that deposits layers in large panels to produce thousands of individual parts. It has some similarities to semiconductor processing, since HVPF can utilize conductors and insulators in the same layer. For example, it can produce a ceramic package with buried passive components and circuit conductors all at the same time. The technology can build temporary elements from fugitive materials to produce channels and open structures after heat processing. It has some similarities to rapid prototyping (RP) in that it builds parts from layers, but unlike RP the process works with conductors, dielectrics, passive components and is an actual manufacturing process not a model making technique like RP.

HVPF(TM) can be utilized with special versions of screen, stencil, offset and litho printing. Other methods like micro-dispensers, tape casting and jet printing can also be used for certain design elements. All of these techniques require proprietary "inks" to produce the ceramic, metal, catalyst or polymer features. These inks must print to high tolerance, bond where required, set quickly during the build and then decompose to the final material such as metals or ceramics. At the same time, the thermal properties of the materials must be adjusted to accommodate shrinkage, thermal expansion and other parameters.

This talk will discuss the technology and describe applications including: cell phone antennas, energy harvesters to replace batteries, thermal management devices and microreactors for use in fuel cells.

For more information, please click here

Contacts:
Janice Odell
+1-707-237-2738

EoPlex Technologies, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Announcements

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Energy

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Nexeon Attracts ex-Nokia Product Executive to its Board of Directors December 15th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Lengthening the life of high capacity silicon electrodes in rechargeable lithium batteries: Novel rubber-like coating could lead to longer lasting batteries December 2nd, 2014

Events/Classes

Bruker Introduces BioScope Resolve High-Resolution BioAFM System: Featuring PeakForce Tapping for Quantitative Bio-Mechanical Property Mapping December 16th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

PETA science consortium to present at Society for Risk Analysis meeting December 10th, 2014

Fuel Cells

Toward a low-cost 'artificial leaf' that produces clean hydrogen fuel December 3rd, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Printing/Lithography/Inkjet/Inks

Nanoshaping method points to future manufacturing technology December 11th, 2014

New technique allows low-cost creation of 3-D nanostructures December 8th, 2014

SEMATECH Reports Significant Progress in EUV Resist Outgas Testing: Technologists from SEMATECH and JSR demonstrate outgas test results that further enable EUV lithography for high-volume manufacturing readiness December 3rd, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE