Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > EoPlex CEO Arthur L. Chait Will Speak on the Topic of Filling the Gap Between Nano and 'Just Plain Miniature' Devices at the IEEE Meeting February 13t

Abstract:
EoPlex CEO Arthur L. Chait Will Speak on the Topic of Filling the Gap Between Nano and 'Just Plain Miniature' Devices at the IEE

EoPlex CEO Arthur L. Chait Will Speak on the Topic of Filling the Gap Between Nano and 'Just Plain Miniature' Devices at the IEEE Meeting February 13t

REDWOOD CITY, CA | Posted on February 3rd, 2008

Arthur L. Chait will present to the IEEE Components, Packaging and Manufacturing Technology Society of Silicon Valley on Wednesday, February 13th, 6:30 p.m. at the Sunnyvale Ramada Inn.

Mr. Chait will note that a great deal of progress has been made in the field of nano and related "tiny" technologies. Unfortunately, the technology to link the tiny world to the macro world has not kept pace. The space between nano and macro is immense. At the nano end are self-assembling structures and semiconductor processes that deal in angstroms; and at the macro end are conventional machining and assembly techniques. Between these two extremes there is a gap where engineers struggle to make low-cost devices with complex 3-D structures containing multiple materials that are "Just Plain Miniature" (JPM). This talk will discuss the meso-scale, HVPF(TM) technology and describe applications including: cell phone antennas, energy harvesters to replace batteries, thermal management devices and microreactors for use in fuel cells. [A full abstract is located in the Appendix below.]

Dinner tickets are $30.00 each. The presentation-only session at 7:30 p.m. is offered at no cost. The Sunnyvale Ramada Inn is located at 1217 Wildwood Avenue, Freeway 101 frontage road, between Lawrence Expressway and Great America Parkway, Sunnyvale, (800.888.3899). Tickets may be purchased through PayPal. Reserve in advance by email to Janis Karklins,

About CPMT

The IEEE Components, Packaging and Manufacturing Technology (CPMT) Society is the leading international forum for scientists and engineers engaged in the research, design and development of revolutionary advances in microsystems packaging and manufacture. The non-profit Society helps professionals through its journals, conferences and workshops, committee activities, local chapter events, educational programs and awards. For more information, visit http://www.cpmt.org/. CPMT is part of the IEEE (Institute of Electrical and Electronics Engineers), the world's largest professional technology association. This non-profit organization develops, defines and reviews electronics and computer science standards. Standards developed by the IEEE often become international standards. Membership includes deans and provosts of every major engineering university and college throughout the world. Membership also includes engineering managers and corporate and financial executives.

About Arthur L. Chait

Arthur L. Chait joined EoPlex in 2002 and was elected Chairman of the Board in 2003. EoPlex is a Silicon Valley start-up that utilizes new technology to manufacture low-cost ceramic-metal components for miniature energy devices, sensors, fuel cells, pumps, packages and circuits. Mr. Chait has raised two rounds of VC funding and the company is now backed by Draper Fisher Jurvetson, ATA Ventures, Labrador Ventures, and Draper Richards. Prior to EoPlex, Mr. Chait was with Solectron (NYSE) as Senior VP Global Accounts where he had revenue responsibility of over $10 billion/year with customers including: IBM, Cisco, Dell, Apple, Ericsson, SUN, Nortel, Nokia, HP/Compaq, Motorola, and Lucent. Mr. Chait's prior experience also includes: GM Zitel (NASDAQ) where he created the software division; Senior VP at Stanford Research Institute with responsibility for 600 staff and all international offices; Booz Allen & Hamilton where he managed assignments in technology strategy for major OEMs; and Dresser/Halliburton where he was a research director in advanced materials. Mr. Chait holds an MBA from the University of Pittsburgh and a BS in Materials Engineering from Rutgers University and was also awarded the Steinmetz Medal from GE.

####

About EoPlex Technologies, Inc.
EoPlex Technologies, Inc. produces components using innovative deposition techniques based on custom printing equipment and proprietary "inks" that carry ceramic, metallic or polymer materials to millions of locations. This allows the manufacture of components with integrated chambers, channels, sensors, circuits, reactors, energy scavengers and other features. Many parts are created simultaneously in large panels and the only tooling required is low-cost printing masks. As a result, there is great flexibility to change designs quickly, allowing fast time to market and even modifications during full production runs. EoPlex is a privately held company based in Redwood City, CA and is backed by ATA Ventures, Draper Fisher Jurvetson, Labrador Ventures and Draper-Richards. For more information, visit http://www.eoplex.com.

APPENDIX Abstract of Presentation by Arthur Chait for CPMT/SCV, February 13, 2008

A great deal of progress has been made in the field of nano and related "tiny" technologies. Unfortunately, the technology to link the tiny world to the macro world has not kept pace. The space between nano and macro is immense. At the nano end are self-assembling structures and semiconductor processes that deal in angstroms; and at the macro end are conventional machining and assembly techniques. Between these two extremes there is a gap where engineers struggle to make low-cost devices with complex 3-D structures containing multiple materials that are "Just Plain Miniature" (JPM).

This gap is often referred to as meso-scale and in this presentation we will consider a meso-scale of roughly 20 microns to 20 millimeters. A number of manufacturing technologies are used in this range including: thin film, lithography, etching, molding, embossing and micromachining. A very successful example is the application of semiconductor processing to create MEMs devices in silicon. MEMs airbag accelerometers and ink jet printer heads account for annual sales of several billion dollars per year.

However, semiconductor technology is not suitable for many other needs. Large, diverse markets exist for miniature devices that cannot be made with semiconductor technology and which require combinations of materials such as ceramics, metals and even polymers. The processes available to meet these needs are limited, costly and, in some cases, don't even exist. This presentation will review some of the existing technologies and then introduce a new technology call High Volume Print Forming (HVPF(TM)) that is able to fill an important portion of this gap.

HVPF(TM) is an additive manufacturing process that deposits layers in large panels to produce thousands of individual parts. It has some similarities to semiconductor processing, since HVPF can utilize conductors and insulators in the same layer. For example, it can produce a ceramic package with buried passive components and circuit conductors all at the same time. The technology can build temporary elements from fugitive materials to produce channels and open structures after heat processing. It has some similarities to rapid prototyping (RP) in that it builds parts from layers, but unlike RP the process works with conductors, dielectrics, passive components and is an actual manufacturing process not a model making technique like RP.

HVPF(TM) can be utilized with special versions of screen, stencil, offset and litho printing. Other methods like micro-dispensers, tape casting and jet printing can also be used for certain design elements. All of these techniques require proprietary "inks" to produce the ceramic, metal, catalyst or polymer features. These inks must print to high tolerance, bond where required, set quickly during the build and then decompose to the final material such as metals or ceramics. At the same time, the thermal properties of the materials must be adjusted to accommodate shrinkage, thermal expansion and other parameters.

This talk will discuss the technology and describe applications including: cell phone antennas, energy harvesters to replace batteries, thermal management devices and microreactors for use in fuel cells.

For more information, please click here

Contacts:
Janice Odell
+1-707-237-2738

EoPlex Technologies, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Announcements

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Energy

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Evident Thermoelectrics Acquires GMZ Energy: Investment Accelerates Launch Of Evident's Thermoelectric Modules For Waste Heat May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Events/Classes

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Fuel Cells

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

Expanding the reach of metallic glass April 22nd, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

Printing/Lithography/Inkjet/Inks

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Printing 3-D graphene structures for tissue engineering: A new ink formulation allows for the 3-D printing of graphene structures May 19th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project