Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > TU Delft launches bionanoscience initiative

Abstract:
A new Bionanoscience department will be created at TU Delft. Bionanoscience concerns research at the meeting point of biology and nanotechnology meet and is as yet largely unexplored. It is expected to become one of the key scientific fields of the 21st century. Over the next decade, TU Delft is set to invest 10 million Euro derived from strategic assets in the new Bionanoscience department, which will form part of the university's successful Kavli Institute of Nanoscience. Last week, the Kavli Foundation also agreed to help support the initiative financially by donating 5 million US$.

TU Delft launches bionanoscience initiative

Netherlands | Posted on February 2nd, 2008

Bionanoscience is the discipline where biology and nanoscience meet. The molecular building blocks of living cells are the focus of bionanoscience. The nanotechnology toolkit enables the precise depiction, study and control of biological molecules. This creates new insights into the fundamental workings of living cells. Furthermore, it is increasingly possible to use the elements of the cell, to the extent that - in a new field called synthetic biology - gene regulation systems, artificial biomolecules and nanoparticles can be developed and applied within the cells. The incorporation of new biological building blocks in cells is highly promising for applications in, for instance, industrial biotechnology and medical science. The Faculty of Applied Sciences' new Bionanoscience department will explore the full spectrum from nanoscience to cell biology to synthetic biology, and as such will naturally and strategically complement the activities of the existing Nanoscience and Biotechnology departments.

Investment in biologically oriented fundamental research and its potential applications is of great strategic importance to TU Delft. This research field is new and has a bright future, and the research into individual cells is at the cutting edge of science and technology. Cell biology is becoming increasingly an engineering discipline: the traditional approach of the biologist is rapidly changing into that of the engineer. This is the motivation behind TU Delft's strategic decision to add bionanoscience to its research portfolio and by doing so enhance its international position and profile.

In addition to TU Delft's EUR 10m contribution, last week the Kavli Foundation also decided that it is willing to donate USD 5m to the bionanoscience initiative.

The new department will work closely with the Nanoscience and Biotechnology departments and will ultimately be the same size as the existing departments in the Faculty of Applied Sciences. To this end, the next few years will see an intensive recruitment drive to attract about 15 top scientists to the department.

Initial steps have already been taken towards creating structural European cooperation: the prestigious European Molecular Biology Laboratory (EMBL) in Heidelberg has indicated its willingness to work together with TU Delft bionanoscientists. EMBL is a major potential partner, in particular in view of the EMBL's expertise in the field of molecular cell biology. Further discussions on cooperation will be held with representatives from EMBL during a Kavli-EMBL workshop in Delft on 12 and 13 February.

####

For more information, please click here

Contacts:
Information TU Delft
T: 0031 (0)15 278 9111


Press information
Karen Collet
T: 0031 (0)15 278 5408


Science information
Frank Nuijens
T: 0031 (0)15 278 4259


Roy Meijer
T: 0031 (0)15 278 1751


Ineke Boneschansker
T: 0031 (0)15 278 8499

Copyright © TU Delft

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Announcements

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

What makes cancer cells spread? New device offers clues May 19th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

International and U.S. Students and Teachers Headed to Toronto for 34th Annual International Space Development Conference®: Students competed in prestigious NSS-NASA Ames Space Settlement Design Contest May 9th, 2015

Nanobiotechnology

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project