Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > Can nanowoll create revolutionary new sensors?

Dr Avi Shalav, Professor Rob Elliman and Tae-Hyun Kim with a high energy ion implanter
Dr Avi Shalav, Professor Rob Elliman and Tae-Hyun Kim with a high energy ion implanter

Scientists not sheepish about potential of nanowool

Can nanowoll create revolutionary new sensors?

Australia | Posted on January 31st, 2008

There have been many instances in history where prominent scientists have claimed to know pretty much all there is to know about a particular topic apart from sorting out a few minor details. What has almost invariably happened in such cases is that those details have proved to be vitally important and when investigated, they have revolutionized our view of the world. To a good scientist an unresolved detail should never be swept under the carpet, as it may be a gem in disguise.

It was during the course of investigating just such a troublesome detail in thermal processing of silicon wafers that a group of ANU researchers began to uncover the underlying science of a process that may have profound applications in nanoscale biosensors. Professor Rob Elliman and his team noticed that some of the silicon wafer chips they were annealing under high temperature inert gas had white discoloration around the edges. More surprising still, if the wafer chips had a metal film on their surface, the white material covered the entire sample when annealed under certain conditions.

Thermal processing of silicon in inert atmospheres is a common procedure in the semiconductor industry but generally; the temperatures are not nearly high enough to create this surface discoloration. As a result only a handful of researchers had come across this in the past and the underlying science had never been completely understood. The team were intrigued and decided to investigate.

Initial analysis revealed that the material was silica dioxide (SiO2) which was surprising because nominally, there was no oxygen in the system. Even more surprises came when the mystery material was examined under the electron microscope. It turns out that the SiO2 was in the form of nano-wires that were an incredible 2mm long. That would be the equivalent of a head of human hair stretching 5km. The team set about trying to understand the growth mechanism of this nanostructure by subtly varying the growth conditions, introducing slabs of different source material near the wafer and even using different types of furnace tube. It's very difficult to isolate factors in a high temperature system that can be affected by a couple of parts per million of common elements.

Extensive analysis revealed that the oxygen in the SiO2 nanowires was being provided by the few parts per million residual impurities present in the inert gas used to purge the furnace tube. Under high oxygen concentrations and at temperatures above about 1000C silicon will form a thick coating of solid SiO2. However, at very low partial pressures of oxygen, volatile SiO forms on the surface of the wafer and is absorbed by the metal particles on the surface at a great rate. The silicon/metal eutectic then transports the SiO to growth sites on the wires. Under some conditions, the tiny metal blobs sit at the tip of each growing wire. If the parameters are varied, the blobs remain on the surface, the wires extruding from them like hairs from a mole. This difference could be vital in potential practical applications as it affects the adhesion of the layer on the substrate wafer.

Although the science of the nano-wool production process was interesting in itself, the researchers also wanted to develop a practical application for the novel material. During the course of their other work on silicon, Professor Elliman's team use many laboratory diagnostic techniques, including photoluminescence - the reemitted light from a crystal after excitation by a laser pulse. The spectrum and lifetime of photoluminescence can reveal a great deal about the properties of a material. This set the team thinking about what might happen if the wool were excited by laser pulses. Normally one would see the properties of the bulk SiO2 but the long fine wires might theoretically be expected to add an extra dimension to this.

When light is totally internally reflected within a high refractive index medium - such as it is when it bounces down an optical fibre or SiO2 nanowire, the sinusoidal electromagnetic oscillations of the photons extend slightly beyond the physical medium. This exponentially decaying external field is called the evanescent wave and exists because the electric and magnetic fields of the photon cannot be discontinuous at a boundary. The practical upshot of this is that if the properties of the environment the fibre or nanowire sits in affects the light propagating within it. Thus if a mat of suitably prepared nanowool is excited by a laser pulse, the reemitted photoluminescence signal from the fibres will have a differing intensity and life-time if the air between the fibres contains certain chemicals. The researchers believe that this may make suitably coated nanowool a great candidate for a solid-state sensor for anything from alcohol to biologically important molecules.

It's still early days for nanowool sensors and the researchers are cautious about making grand predictions, but at this point the possibilities do seem quite exciting.


About The Australian National University
The Australian National University (ANU) is one of the world's foremost research universities. Distinguished by its relentless pursuit of excellence, ANU attracts leading academics and outstanding students from Australia and around the world.

For more information, please click here

The Australian National University
Canberra ACT 0200
+61 2 6125 5001

Copyright © The Australian National University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Haydale and Goodfellow Announce Major Distribution Agreement for Functionalised Graphene Materials July 21st, 2014

Relaunch of the Nanoscribe Website New design, optimized research, and impressive gallery of applications July 21st, 2014

Dongbu HiTek Unveils Low-Voltage BCDMOS Process for Efficient Power Management in Smart Phones and Tablet Computers July 21st, 2014

Iran to Host 1st Asian Congress on Nanostructures on Kish Island July 21st, 2014


Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Iranian Scientists Use Nanosensors to Achieve Best Limit for Early Cancer Diagnosis July 19th, 2014

Rice nanophotonics experts create powerful molecular sensor: Sensor amplifies optical signature of single molecules about 100 billion times July 15th, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014


Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014


Oxford Instruments Asylum Research Opens an Atomic Force Microscopy Demonstration Lab in Mumbai, India July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Iran to Host 1st Asian Congress on Nanostructures on Kish Island July 21st, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE