Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Cellix Ltd. Launches the First Semi-Automated, High Throughput Cell-Adhesion Assay Platform

Abstract:
The VenaFlux(TM) Platform Accurately Mimics a Human Capillary

Cellix Ltd. Launches the First Semi-Automated, High Throughput Cell-Adhesion Assay Platform

DUBLIN, Ireland | Posted on January 30th, 2008

Cellix Ltd., an international provider of microfluidic systems in the emerging field of nano-lifesciences, announced today its worldwide launch of its VenaFlux(TM) Platform. The VenaFlux(TM), the first semi-automated, high throughput microfluidic cell- based assay system, measures cell adhesion to antibody-coated or endothelial- cell cultured microchannels, producing IC50 curves under shear stress conditions mimicking physiological flow. The system thereby offers scientists an important and unique tool for drug discovery. The VenaFlux(TM) is simple to use, reduces costly layers of animal model studies, and delivers specific, accurate, and reproducible results.


Using the VenaFlux(TM), scientists can rapidly obtain quantitative analyses and results for potential drug candidates in therapeutic areas including cardiovascular, respiratory, immunologic, autoimmune and oncologic disease states. Relatively rapid analyses reduces drug development costs by accelerating false lead elimination and increasing productivity in pharmaceutical and biotechnology research and development laboratories.

"Understanding how cells behave in human capillaries is an expanding area in global research and development for discovering new patient therapies," said Vivienne Williams, CEO of Cellix Ltd. "Our VenaFlux(TM) accurately replicates cell behavior in human capillaries, an in vitro modeling system that has previously been difficult to achieve.

Cellix's technology provides researchers with a single platform for executing dynamic studies to analyze the effects of drugs on cell adhesion, proliferation and transmigration under well-defined shear stress protocols that replicate physiological conditions. "To date, pharmaceutical companies including AstraZeneca and Amgen, as well as research institutions such as the US National Institutes of Health have adopted Cellix's technology to characterize drug effects," commented Ms. Williams.

About the VenaFlux Platform

The VenaFlux(TM) Platform consists of Cellix's patented Mirus(TM) Nanopump with VenaFluxAssay(TM) software, Vena8(TM) Biochips and DucoCell(TM) analysis software; Carl Zeiss Axiovert(TM) 40 CFL microscope, motorized stage with Z- focus, microscope cage incubator, automated dispenser arm, digital camera for image acquisition and PC. The VenaFlux(TM) Platform can run 8 microcapillaries in 15 minutes, thereby achieving 32 assays in one hour or approximately 1,000 assays per week. The VenaFlux(TM) Platform provides an important new in vitro alternative to expensive animal models while simultaneously cutting down costs on reagents and manpower.

####

About Cellix Ltd.
Cellix Ltd. is a privately held instrumentation and cell-based assay company developing technologies that accurately mimic cellular behavior in vivo for cell-based screening in drug discovery. The Company is headquartered in Dublin, Ireland, and maintains offices in New York City.

For more information, please click here

Contacts:
Julia Umlauf
Cellix Ltd.
+1-917-623-4456

Copyright © Cellix Ltd.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Microfluidics/Nanofluidics

Dolomite and Lab on a Chip launch Productizing Science® Competition 2015 October 7th, 2014

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Nanomedicine

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE