Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New kind of transistor radios shows capability of nanotube technology

Abstract:
Carbon nanotubes have a sound future in the electronics industry, say researchers who built the world's first all-nanotube transistor radios to prove it.

New kind of transistor radios shows capability of nanotube technology

CHAMPAIGN, IL | Posted on January 28th, 2008

The nanotube radios, in which nanotube devices provide all of the active functionality in the devices, represent "important first steps toward the practical implementation of carbon-nanotube materials into high-speed analog electronics and other related applications," said John Rogers, a Founder Professor of Materials Science and Engineering at the University of Illinois.

Rogers is a corresponding author of a paper that describes the design, fabrication and performance of the nanotube-transistor radios, which were achieved in a close collaboration with radio frequency electronics engineers at Northrop Grumman Electronics Systems in Linthicum, Md.

The paper has been accepted for publication in the Proceedings of the National Academy of Sciences, and is to be published in PNAS Online Early Edition next week.

"These results indicate that nanotubes might have an important role to play in high-speed analog electronics, where benchmarking studies against silicon indicate significant advantages in comparably scaled devices, together with capabilities that might complement compound semiconductors," said Rogers, who also is a researcher at the Beckman Institute and at the university's Frederick Seitz Materials Research Laboratory.

Practical nanotube devices and circuits are now possible, thanks to a novel growth technique developed by Rogers and colleagues at the U. of I., Lehigh and Purdue universities, and described last year in the journal Nature Nanotechnology.
The growth technique produces linear, horizontally aligned arrays of hundreds of thousands of carbon nanotubes that function collectively as a thin-film semiconductor material in which charge moves independently through each of the nanotubes. The arrays can be integrated into electronic devices and circuits by conventional chip-processing techniques.

"The ability to grow these densely packed horizontal arrays of nanotubes to produce high current outputs, and the ability to manufacture the arrays reliably and in large quantities, allows us to build circuits and transistors with high performance and ask the next question," Rogers said. "That question is: ‘What type of electronics is the most sensible place to explore applications of nanotubes?' Our results suggest that analog RF (radio frequency) represents one such area."

As a demonstration of the growth technique and today's nanotube analog potential, Rogers and collaborators at the U. of I. and Northrop Grumman fabricated nanotube transistor radios, in which nanotube devices provided all of the key functions.

The radios were based on a heterodyne receiver design consisting of four capacitively coupled stages: an active resonant antenna, two radio-frequency amplifiers, and an audio amplifier, all based on nanotube devices. Headphones plugged directly into the output of a nanotube transistor. In all, seven nanotube transistors were incorporated into the design of each radio.

In one test, the researchers tuned one of the nanotube-transistor radios to WBAL-AM (1090) in Baltimore, to pick up a traffic report.

"We were not trying to make the world's tiniest radios," Rogers said. "The nanotube radios are a demonstration, an important milestone toward building the technology into a form that ultimately would be commercially competitive with entrenched approaches."
The work was funded by the National Science Foundation and the U.S. Department of Energy.

####

About University of Illinois
At Illinois, research shapes the campus identity, stimulates classroom instruction and serves as a springboard for public engagement activities throughout the world. Opportunities abound for graduate students to develop independent projects and launch their own careers as researchers while working alongside faculty and assisting in their research. Illinois continues its long tradition of groundbreaking accomplishments with remarkable new discoveries and achievements that inspire and enrich the lives of people around the world.

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073


John Rogers
217-244-4979

Copyright © University of Illinois

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Nanotubes/Buckyballs

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Discoveries

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE