Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Towards bio-inspired hydrogen production without noble metals

Abstract:
Using hydrogen as an energy vector and in fuel cells may provide solutions to the specific energy challenges of the 21st century. Hydrogen production is currently based on the catalytic properties of "noble" metals such as platinum. For the first time, researchers at the joint Laboratoire de chimie et biologie des métaux (metal chemistry and biology, CEA-CNRS-Université Joseph Fourier, CEA's Grenoble site) have succeeded in producing hydrogen with a molecular system that doesn't require a noble metal catalyst. This outcome has important implications for the financial future of hydrogen energy and was published on 4 January in the journal Angewandte Chemie International Edition.

Towards bio-inspired hydrogen production without noble metals

France | Posted on January 25th, 2008

Research to improve hydrogen production is based largely on chemical reactions observed during photosynthesis in plants. More specifically, certain micro-organisms produce hydrogen from water with the help of light. To reproduce and adapt these processes, researchers have developed molecular systems capable of both photosensitisation, which captures light energy, and catalysis, which uses the energy collected to liberate hydrogen from water. To date, all the technological systems developed to produce or use hydrogen rely on noble metals(1) such as platinum. But platinum reserves are limited. The metal's scarcity and cost are obstacles to the long-term financial prospects of hydrogen technologies, despite efforts to reduce the quantities used in electrolysers and fuel cells. Current research focuses on alternatives to platinum, by developing catalysts based on metals which are naturally more abundant and less expensive, such as those used by natural organisms (iron, nickel, cobalt, manganese).

A new system has been developed using a cobalt-based catalyst. Supramolecular in nature, it plays the role of both the photosensitiser and the catalyst. With the help of light, the electrons from the organic molecule are used to liberate hydrogen from water. This is catalysed by cobalt with greater efficiency than comparable systems using noble metals (Pd, Rh and Pt). Ruthenium is still used as the photosensitiser (Ru, left side of the figure); one of the next steps in this work will be finding an alternative.

While the ultimate goal is still to use water as a proton and electron source (to avoid adding an organic molecule), this outcome represents considerable progress towards the photoproduction of hydrogen.
Notes :

1) Historically, noble metals were the precious metals used to make jewellery (gold, silver, platinum). Chemists define them as metals which do not oxidise easily. Today this term is applied to metals present at low levels in the earth's crust, making them both rare and costly (palladium, rhodium, iridium, osmium and ruthenium)

####

For more information, please click here

Contacts:
CEA (French Atomic Energy Commission)
Stéphane Laveissière
+33 (0 1 64 50 27 53

CNRS (French National Centre for Scientific Research)
Claire Le Poulennec
+33 (0) 1 44 96 49 88

Université Joseph Fourier
Muriel Jakobiak
+33 (0) 4 76 51 44 98

Copyright © CNRS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Announcements

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Fuel Cells

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Iowa State engineers treat printed graphene with lasers to enable paper electronics September 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project