Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Towards bio-inspired hydrogen production without noble metals

Abstract:
Using hydrogen as an energy vector and in fuel cells may provide solutions to the specific energy challenges of the 21st century. Hydrogen production is currently based on the catalytic properties of "noble" metals such as platinum. For the first time, researchers at the joint Laboratoire de chimie et biologie des métaux (metal chemistry and biology, CEA-CNRS-Université Joseph Fourier, CEA's Grenoble site) have succeeded in producing hydrogen with a molecular system that doesn't require a noble metal catalyst. This outcome has important implications for the financial future of hydrogen energy and was published on 4 January in the journal Angewandte Chemie International Edition.

Towards bio-inspired hydrogen production without noble metals

France | Posted on January 25th, 2008

Research to improve hydrogen production is based largely on chemical reactions observed during photosynthesis in plants. More specifically, certain micro-organisms produce hydrogen from water with the help of light. To reproduce and adapt these processes, researchers have developed molecular systems capable of both photosensitisation, which captures light energy, and catalysis, which uses the energy collected to liberate hydrogen from water. To date, all the technological systems developed to produce or use hydrogen rely on noble metals(1) such as platinum. But platinum reserves are limited. The metal's scarcity and cost are obstacles to the long-term financial prospects of hydrogen technologies, despite efforts to reduce the quantities used in electrolysers and fuel cells. Current research focuses on alternatives to platinum, by developing catalysts based on metals which are naturally more abundant and less expensive, such as those used by natural organisms (iron, nickel, cobalt, manganese).

A new system has been developed using a cobalt-based catalyst. Supramolecular in nature, it plays the role of both the photosensitiser and the catalyst. With the help of light, the electrons from the organic molecule are used to liberate hydrogen from water. This is catalysed by cobalt with greater efficiency than comparable systems using noble metals (Pd, Rh and Pt). Ruthenium is still used as the photosensitiser (Ru, left side of the figure); one of the next steps in this work will be finding an alternative.

While the ultimate goal is still to use water as a proton and electron source (to avoid adding an organic molecule), this outcome represents considerable progress towards the photoproduction of hydrogen.
Notes :

1) Historically, noble metals were the precious metals used to make jewellery (gold, silver, platinum). Chemists define them as metals which do not oxidise easily. Today this term is applied to metals present at low levels in the earth's crust, making them both rare and costly (palladium, rhodium, iridium, osmium and ruthenium)

####

For more information, please click here

Contacts:
CEA (French Atomic Energy Commission)
Stéphane Laveissière
+33 (0 1 64 50 27 53

CNRS (French National Centre for Scientific Research)
Claire Le Poulennec
+33 (0) 1 44 96 49 88

Université Joseph Fourier
Muriel Jakobiak
+33 (0) 4 76 51 44 98

Copyright © CNRS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Announcements

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Fuel Cells

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project