Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > EU project on intelligent materials to regenerate bone tissue

Abstract:
More than half a million Europeans suffer from disorders in or serious defects of some part of their bone structure. So, graft or implant operations needed to repair the damage depend decisively on the materials used.

The Nanobiocom project, funded under the EU's Sixth Framework Programme (FP6), is working on the regeneration and repair of bone tissue. Its aim is to come up with a substitute for bone tissue that can repair the bone and regenerate it in such a way that it will be able to carry out similar functions to those in its natural state.

EU project on intelligent materials to regenerate bone tissue

Europe | Posted on January 25th, 2008

In the case of significant deterioration of the bone, it may be necessary for the implant to provide both functional and physiological properties of the damaged item. In such circumstances, the bone implants have to comply with certain requisites capable of contributing to a reconstruction of the deteriorated bone tissue in the most efficient and least harmful way possible, without any serious repercussions. Another requirement involves the carrying out of the mechanical functions of the damaged bone while the desired regeneration takes place.

In addition, the solutions have to be capable of remedying particularly serious damage, such as those due to congenital deficiencies, degenerative illnesses, cancerous disorders and other damage caused by accidents. The implants required for this type of solutions are more complex and sophisticated than the small implants known until now.

So the Nanobiocom project will seek to develop a support (scaffold) made out of a compound material that is 'intelligent', proactive, and capable of repairing and regenerating bone tissue. For this purpose, it has to be bioactive, capable of acting on the tissue-generating system and its corresponding genes, as well as responding correctly to the physiological and biological changes, both internal and external, of that system.

It is also necessary for its size and shape characteristics, as well as its mechanical functions, to correspond with those of healthy bones.

The specific tasks of the three-year project are now on fine tuning the intelligent material, based on nanoparticles and of a biodegradable nature. Also in the pipeline is the development of the cell culture in three dimensions, as well as ensuring the biocompatibility of the material.

Ultimately, the scientists involved in the frontier research project hope it will open new doors in the development of nanobiotechnology.

####

About European Union
The main objective of the NANOBIOCOM project is to establish the scientific and technological basis for the development new “intelligent” composite scaffold for bone tissue repair and regeneration with bioactive behavior capable of activating osteoprogenitor cells and genes and within an in vivo environment provide the interface to respond to physiological and biological changes, with mechanical and structural properties similar to a healthy bone and with size and shape required for reconstructing big skeletal defects.

For more information, please click here

Copyright © European Union

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Nanomedicine

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

Nanotubes that build themselves April 14th, 2017

Announcements

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project