Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Miniaturised Sensors for Explosives Detection in Air

Handheld explosives detection devices which are fast, reliable, sensitive and suitable for low cost mass production, are at the end of the pipeline in a new international nanotechnology research project.

Miniaturised Sensors for Explosives Detection in Air

Denmark | Posted on January 25th, 2008

There is a strong need for fast, reliable, sensitive and handheld low cost sensors for detection of explosives. Land Mines and left behind ammunition kill or injure thousands of people every year. Also explosives represent a widespread environmental hazard as contaminated drinking water is poisonous even in small doses.

An international research consortium of universities and industry has received a grant of 15 million Danish Kroner from the The Programme Commission on Nanoscience, Biotechnology and IT (NABIIT) for research in miniaturised sensors for explosives detection. The consortium is led by Professor Anja Boisen, Department of Micro and Nanotechnology at the Technical University of Denmark. The research consortium brings 14.2 million Danish Kroner into the project by itself. The additional NABIIT grant allows at least 5 PhD positions and two PostDocs in nanotech sensor technology to support the research in explosives detection.

Available explosives detection technology uses expensive sensor equipment which is not easily moved around. Alternatively dogs are used to track explosives. Dogs are sensitive, but expensive, difficult to handle and are only able to work for a limited time span.

The intention of the research project is to develop miniaturised sensors for use in a low cost handheld device suitable for mass production. Head of the NABIIT Programme Commission, Lars Mathiassen, is happy to see nanotechnology being applied for security purposes, and emphasises the significance of applying nanotechnology to develop sufficiently small sensors for the detection of explosives.

To obtain maximum precision in the measurement of even very small amounts of explosives, scientists will combine different sensor technologies. The consortium focuses on optimising four available sensor technologies, which in the last phase of the project will be combined to achieve the necessary precision in the explosives detection. The project involves cooperation with a number of Danish research institutions, the Oak Ridge National Laboratory (USA) and the sensor technology companies, Unisensor (Denmark) and Serstech (Sweden).


About Technical University of Denmark
The DTU organization as of 1st January 2008 is the result of the implementation of the merger between the The Technical University of Denmark, Research Center Risø, the Danish Institute for Food and Veterinary Research, the Danish Institute For Fisheries Research, the Danish National Space Center and the Danish Transport Research Institute, which merged on 1st January 2007. The new larger university has retained DTU, The Technical University of Denmark, as its name. Almost all departments' scientific core areas have been focused and strengthened, and the department names have been changed. Risø DTU is a National Laboratory for sustainable energy.

For more information, please click here

Jesper Spang

Copyright © Technical University of Denmark

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES and Soitec Enter Into Long-term Supply Agreement on FD-SOI Wafers: Strategic milestone to help guarantee a secure, high-volume supply of FD-SOI technology September 20th, 2017

GLOBALFOUNDRIES Announces Availability of mmWave and RF/Analog on Leading FDX™ FD-SOI Technology Platform: Technology solution delivers ‘connected intelligence’ to next generation high-volume wireless and IoT applications with lower power and significantly reduced cost September 20th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017


Leti Develops Proof of Concept to Test Wireless Systems in Aircraft: Will Present Results of Joint Project at AeroTech Conference And Exhibition in Fort Worth, Texas, Sept. 26-28 September 20th, 2017

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Leti and Partners in PiezoMAT Project Develop New Fingerprint Technology for Highly Reliable Security and ID Applications: Ultra-high Resolution Pressure Sensing Uses Matrices of Vertical Piezoelectric Nanowire To Reconstruct the Smallest Features of Human Fingerprints September 5th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017


GLOBALFOUNDRIES Delivers 8SW RF SOI Technology for Next-Generation Mobile and 5G Applications: Advanced 8SW 300mm SOI technology enables cost-effective, high-performance RF front-end modules for 4G LTE mobile and sub-6GHz 5G applications September 20th, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017


First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project