Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Discovery cuts cost of next generation optical fibres

Electron microscope image of the hollow-core fibre
Electron microscope image of the hollow-core fibre

Abstract:
Scientists have discovered a way of speeding up the production of hollow-core optical fibres - a new generation of optical fibres that could lead to faster and more powerful computing and telecommunications technologies.

Discovery cuts cost of next generation optical fibres

Bath, UK | Posted on January 17th, 2008

The procedure, described today in the journal Optics Express, cuts the production time of hollow-core optical fibres from around a week to a single day, reducing the overall cost of fabrication.

Initial tests show that the fibre is also superior in virtually every respect to previous versions of the technology, making it an important step in the development of new technologies that use light instead of electrical circuits to carry information.

These technologies include faster optical telecommunications, more powerful and accurate laser machining, and the cheaper generation of x-ray or ultra-violet light for use in biomedical and surgical optics.

"This is a major improvement in the development of hollow-core fibre technology," said Professor Jonathan Knight from the Centre for Photonics & Photonic Materials in the Department of Physics at the University of Bath.

"In standard optical fibres, light travels in a small cylindrical core of glass running down the fibre length.

"The fact that light has to travel through glass limits them in many ways. For example, the glass can be damaged if there is too much light.

"Also, the glass causes short pulses of light to spread out in a blurring effect that makes them less well defined. This limits its usefulness in telecommunications and other applications.

"Hence, fibres in which light travels in air down a hollow core hold great promise for a next generation of optical fibres with performance enhanced in many ways."

The problem in developing hollow-core fibres is that only a special sort of optical fibre can guide light down an air hole. They use a two-dimensional pattern of tiny holes in the glass around the core to trap the light within the core itself.

The highly detailed nature of these fibres means that they have been difficult to fabricate and they can only work for a limited range of wavelengths.

However, the new procedure developed by the Bath photonics group shows how a tiny change to these fibres - narrowing the wall of glass around the large central hole by just a hundred nanometres (a 10 millionth of a metre) - broadens the range of wavelengths which can be transmitted.

They achieved this by omitting some of the most difficult steps in the fabrication procedure, reducing the time required to make the fibres from around a week to a single day.

The improved fibre was developed as part of a European Commission-funded Framework 6 project ‘NextGenPCF' for applications in gas sensing.

However, the superior performance of the fibre means that it could have a significant impact in a range of fields such as laser design and pulsed beam delivery, spectroscopy, biomedical and surgical optics, laser machining, the automotive industry and space science.

"The consequences of being able to use light rather than electrical circuits to carry information will be fundamental," said Professor Knight.

"It will make optical fibres many times more powerful and brings the day when information technology will consist of optical devices rather than less efficient electronic circuits much closer.

"For biomedical research, we can use these fibres to deliver light for diagnosis or surgery anywhere - even deep inside the body.

"Almost any device where light is important or can be used, photonic crystal fibres can make more efficient, sensitive and powerful."

‘Control of surface modes in low loss hollow-core photonic bandgap fibers', Optics Express, Vol. 16, Issue 2, pp. 1142-1149.

####

About University of Bath
The University of Bath is one of the UK's leading universities, with an international reputation for quality research and teaching. In 15 subject areas the University of Bath is rated in the top ten in the country.

For more information, please click here

Contacts:
Andrew McLaughlin
University Press Office
+44 (0)1225 386 883
+44 (0)7966 341 357

Copyright © University of Bath

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Discoveries

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Announcements

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Automotive/Transportation

Canadian physicists discover new properties of superconductivity February 8th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

LC.300 Series Nanopositioning Controller from nPoint January 28th, 2016

Aerospace/Space

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Deep Space Industries teams with UTIAS Space Flight Laboratory to demonstrate autonomous spacecraft maneuvering: SFL and DSI demonstrate enabling technology for low-cost asteroid missions and constellations January 25th, 2016

Graphene composite may keep wings ice-free: Rice University develops conductive material to heat surfaces, simplify ice removal January 25th, 2016

Photonics/Optics/Lasers

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

Switching light with a silver atom February 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic