Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Tire service life extended

Summer tire performance has been enhanced by using Nanoprene in the tire tread, significantly reducing wear and thus extending service life. Dry grip has also been considerably improved over traditional tires with comparable wet grip. (Image size: 18 cm x 13 cm / Image author: LANXESS AG / Image utilization: Photo may be reproduced free of charge. "Photo Credit: LANXESS AG"
Summer tire performance has been enhanced by using Nanoprene in the tire tread, significantly reducing wear and thus extending service life. Dry grip has also been considerably improved over traditional tires with comparable wet grip. (Image size: 18 cm x 13 cm / Image author: LANXESS AG / Image utilization: Photo may be reproduced free of charge. "Photo Credit: LANXESS AG"

Abstract:
Nano additive reduces wear

Tire service life extended

Leverkusen, Germany | Posted on January 17th, 2008

Specialty chemicals group LANXESS has developed a new high-performance rubber additive - Nanoprene. This material additive for the rubber mixture of the tire tread significantly cuts wear in automobile tires. The much longer service life of the tire as a wearing part is easy on the wallet and the environment. Unlike with many new developments in the tire rubber sector, use of this additive to enhance wear resistance does not in any way impact on rolling resistance or wet grip.

"Boosting tire service life without losing other key tread properties was a major challenge for the rubber industry," explains Nanoprene developer Prof. Werner Obrecht, rubber expert at the LANXESS Technical Rubber Products (TRP) business unit. "Despite all the positive developments of the last 20 years, after traveling around 40,000 kilometers, the tread pattern is normally worn and new tires are then needed. This is not only annoying for the customer, since the fine rubber particles created by the tire wear ultimately end up in the environment." The wear properties of a tire rubber are linked to its wet grip and rolling resistance through the "magic triangle of tire technology." To put it simply, it is not possible to have everything at once, i.e. low fuel consumption, reliability on dry and wet roads and a tire that lasts forever. If improvement is desired for one of these properties, this is not feasible without making concessions on the others.

Nanoprene reduces this conflict of objectives. In chemical terms, this additive consists of particles of only around 50 nanometers made from polymerized styrene and butadiene - i.e. "traditional" tire rubber raw materials. What makes all the difference is the minimal size and surface functionality ensured by a highly specialized production process at LANXESS. The nanoparticles with the swell-resistant, highly cross-linked core have special "anchor points" on their surface, enabling the Nanoprene particles to be perfectly linked with silica and silanes. Silica is deployed in modern tires instead of carbon black to cut rolling resistance and gives tires excellent wet grip. "Adding Nanoprene to a tread mix containing silica improves wear resistance and grip. At the same time, rolling resistance remains at a low level. The "magic triangle" is therefore extended," says Prof. Obrecht, highlighting the physical and chemical relationships.

The use of Nanoprene does not entail disadvantages on the process engineering side. Tire manufacturers can, unlike with most "traditional" additives, retain their tried and tested rubber formulations and yet significantly cut wear caused by abrasion. "Nanoprene may be viewed very much as a sort of spice that makes a good recipe even better," says Obrecht. Even the form in which the new product is supplied will be familiar to users. The additive produced by LANXESS at the emulsion rubber production plant in La Wantzenau, France, arrives at the customer in bale form as with any tire rubber. All that has to be done is to optimize the sequence and timing for adding additives and to adapt to the mixing equipment used to enable Nanoprene to deliver the optimal effect. Users can request support for this from LANXESS.

The first products with this additive are already on the market. Nanoprene is currently undergoing extensive tests at selected tire manufacturers. The Nanoprene product range will be expanded in the near future with further grades that vary, for example, in terms of their glass transition temperature - i.e. their low-temperature flexibility - and are thus even better suited to specific types of tire. "With Nanoprene, we haven't just succeeded in making a specialty product out of ordinary SBR tire rubber," explains Obrecht. "This innovation sees us living up to our reputation as a premium supplier and technology leader in the industry."

Together with LANXESS's Rhein Chemie business unit, TRP is opening up further application areas for Nanoprene. These include impact resistance modification for thermoplastics and thermosetting plastics. Work is also under way to develop a specific Nanoprene grade for fuel cell membranes. LANXESS has created numerous patents during the development of Nanoprene which are already applied for patent protection worldwide.

####

About LANXESS
LANXESS is a leading specialty chemical company, with sales of EUR 6.94 billion in 2006 and some 14,500 employees in 21 countries around the world. The company has operations at 47 sites worldwide. LANXESS’s core business comprises the development, manufacture and sale of specialty chemicals, plastics, rubber and intermediates.


Forward-Looking Statements
This news release contains forward-looking statements based on current assumptions and forecasts made by LANXESS AG management. Various known and unknown risks, uncertainties and other factors could lead to material differences between the actual future results, financial situation, development or performance of the company and the estimates given here. The company assumes no liability whatsoever to update these forward-looking statements or to conform them to future events or developments.

For more information, please click here

Contacts:
Michael Fahrig
Tel.: +49 214 30 45041
Fax.: +49 214 30 44865

Copyright © LANXESS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments’ Triton Cryofree dilution refrigerator selected by Oxford University for developing scalable quantum nanodevices September 2nd, 2015

JEOL Introduces New Best-in-Class Field Emission SEM September 2nd, 2015

TCL and QD Vision Demonstrate the Future of Wide Color Gamut Television at IFA: Color IQ Based Display is the First Commercially-Branded Television to Present Over 90% of ITU Rec. 2020 Color Gamut September 2nd, 2015

Atomic Force Microscopes from Asylum Research Guide the Development of Thin Film Deposition and Etch Processes September 2nd, 2015

Products

Nanofilm Introduces Clarity AR Lens Cleaner for Anti-Reflective Superhydrophobic Lenses August 20th, 2015

Pixelligent Launches New PixClear® Light Extraction Materials for OLED Lighting August 4th, 2015

Aculon Launches NanoProof Series for PCB Waterproofing July 20th, 2015

Philips Introduces Quantum Dot TV with Color IQ™ Technology from QD Vision: Manufacturer is first to offer quantum dot displays for both TVs and monitors June 30th, 2015

Materials/Metamaterials

Sustainable nanotechnology center September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Announcements

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Automotive/Transportation

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Lehigh University-DuPont tribology research seeks to reduce wear and waste August 13th, 2015

Flexible dielectric polymer can stand the heat August 6th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Fuel Cells

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Laser-burned graphene gains metallic powers: Rice University scientists find possible replacement for platinum as catalyst August 20th, 2015

New spectroscopy technique provides unprecedented insights about the reactions powering fuel cells Nanotech-enabled chip developed at UCLA can analyze chemical reactions more accurately than large machines August 12th, 2015

Pouring fire on fuels at the nanoscale August 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic