Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Carigent Therapeutics Awarded NCI Phase I SBIR Grant for Preclinical Development of Targeted, Long-Circulating Nanoparticle Therapeutic to Treat Non-H

Abstract:
Carigent Therapeutics, Inc., announced today that the National Cancer Institute of the National Institutes of Health has awarded Carigent a one-year, $153,000 Phase I Small Business Innovation Research (SBIR) grant to advance preclinical development of an innovative, long-circulating nanoparticle therapeutic that targets the specific molecular lesions in non-Hodgkin's lymphoma (NHL) patients.

Carigent Therapeutics Awarded NCI Phase I SBIR Grant for Preclinical Development of Targeted, Long-Circulating Nanoparticle Therapeutic to Treat Non-H

New Haven, CT | Posted on January 16th, 2008

Carigent's novel therapeutic approach is based on the company's proprietary technology for engineering biodegradable nanoparticles with exceptionally high-density surface modifications. The platform enables Carigent to design customized, multifunctional nanoscale carriers with the unique combined capability of:
Tethering multiple "functional groups" such as targeting ligands, diagnostic imaging agents, and polyethylene glycol (PEG) to the nanoparticle surface at previously unattainable densities, and Encapsulating single or combined therapeutic and/or diagnostic agents inside the nanoparticle for sustained, controlled release directly into targeted (i.e., diseased) tissues and cells.

"Non-Hodgkin's lymphoma has one of the fastest-growing incidence rates among cancers and is now the sixth most common cancer in the U.S.," said Seth Feuerstein, MD, JD, President and a co-founder of Carigent. "As we accelerate development of Carigent's engineered nanoparticle therapeutics to address unmet needs in cancer treatment, we are grateful for this financial support from the National Cancer Institute and the additional validation it provides Carigent's versatile nanoparticle delivery technology. The ability to modify particles for targeting as well as increased circulation time is what makes this an exciting project for the field."

####

About Carigent Therapeutics, Inc.
Carigent Therapeutics, Inc. is a biotechnology company developing and commercializing safer and more effective therapeutic and diagnostic products based on the company’s platform technology: Nanoparticles that enable delivery and controlled release of therapeutic and diagnostic agents into specific locations within the body and tissues. The company’s products and services are based on novel nanotechnology developed at Yale University that provides the unique capability of tethering agents for targeting, imaging, and increased circulation time at unprecedented densities to the surface of biodegradable polymer nanoparticles, resulting in drugs that bind to their targets more effectively, are delivered at a higher concentration to the desired location, and/or remain in the bloodstream longer than other nanotechnology-based drugs. The Carigent technology is broadly applicable across a wide variety of disease states and supports multiple types of targeting strategies and carrier designs for existing drugs as well as new drugs in development. Carigent’s initial product development programs are focused on cancer therapeutics. In parallel, Carigent provides access to its nanoparticle drug delivery technology through collaborations and partnerships with pharmaceutical, biotechnology, and diagnostics companies. Carigent was established in 2007 and is based in New Haven, Connecticut.

For more information, please click here

Contacts:
Mary Moynihan
M2Friend Biocommunications
(802) 951-9600

Copyright © Carigent Therapeutics, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nanomedicine

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic