Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > GE Global Research Demonstrates Scalable Low Cost, Nano-based Solar Cell

Abstract:
GE's solar development featured in Applied Physics Letters

GE Global Research Demonstrates Scalable Low Cost, Nano-based Solar Cell

NISKAYUNA, N | Posted on January 16th, 2008

GE Global Research, the centralized research organization of the General Electric Company (NYSE: GE), announced that scientists on their Nano Photovoltaics (PV) team have demonstrated a scalable silicon nanowire-based solar cell, which has the potential to achieve up to 18% efficiency and be produced at a dramatically lower cost than conventional solar cells. This demonstration represents a promising development in the effort to make PV systems more economically viable for consumers.

GE reported its development recently in the journal Applied Physics Letters, which can be accessed online at http://scitation.aip.org/journals/doc/APPLAB-ft/vol_91/iss_23/ 233117_1.html. The paper also was featured in the Virtual Journal of Nanoscale Science & Technology, http://scitation.aip.org/dbt/dbt.jsp?KEY=VIRT01&Volume=16&Issue=26 &type=ALERT, which highlights the latest research in nanotechnology from various science journals. (Long URLs in this release may need to be copied/pasted into your Internet browser's address field. Remove the extra space if one exists.)

"GE's demonstration of the silicon nanowire-based cell represents a significant breakthrough in our efforts to enable higher efficiency cells that can be produced at much lower production costs," said Dr. Loucas Tsakalakos, Project Leader of GE's Nano PV team. "Today, higher efficiency often comes with a higher price tag. Through the unique processing and materials property benefits enabled by nanotechnology, we're aiming to break that paradigm and pave the way to making solar power more affordable for consumers while maintaining and even improving cell performance."

Increasing the affordability and availability of solar power is a key part of GE's ecomagination initiative. Ecomagination represents the company's commitment to develop cleaner technology and product solutions to address the world's toughest environmental and energy challenges. GE has committed to more than doubling its level of investment in environmentally friendly technologies like solar from $700 million to $1.5 billion by the year 2010. GE is well on track to meet its commitment, surpassing the $1 billion mark in R+D spending this year.

GE Energy markets and sells solar electric power systems for residential, commercial and industrial applications. GE's Global Research Center is actively engaged in developing cutting-edge technologies that will advance the Company's product portfolio. The work published in Applied Physics Letters was a result of collaboration between researchers at GE Global Research and GE Energy-Solar Technologies.

GE's Solar Technology Platform

GE's solar research program is unique in that it involves a comprehensive examination across the entire solar industry value chain to enable technology solutions that will make solar power more affordable and available in the U.S. and around the world. The program has a balanced mix of short and long-term technology initiatives to achieve its goals.

The research effort by Dr. Tsakalakos and the Nano PV team, which included Joleyn Balch, Jody Fronheiser, and Dr. Bas Korevaar from GE Global Research, as well as Dr. Oleg Sulima and Dr. Jim Rand from GE Energy-Solar Technologies, represents some of the farthest reaching activities of GE's comprehensive solar research program. GE has an ongoing collaboration with the U.S. Department of Energy (DOE) as part of the agency's Solar America Initiative that is focused on more near-term low-cost PV solutions. GE is managing a three-year, $46.7 million project that is looking across the entire value chain to make solar energy more cost effective and more readily available in the marketplace. The program is evaluating three different technologies for the solar cell: high efficiency silicon-based cells, molded silicon wafers, and flexible thin films. DOE's Solar America Initiative is designed to make solar energy cost-competitive with conventional forms of electricity by 2015.

Beyond this program, GE researchers are working on technologies to convert solar energy into usable power that can be supplied to a house, building or to the electrical grid. As renewables like solar and wind achieve a higher penetration into the grid, new technologies will be needed to smooth their transition.

####

About GE Global Research
GE Global Research was the first industrial research lab in the United States and is one of the world's most diversified research centers, providing innovative technology for all of GE's businesses. Global Research has been the cornerstone of GE technology for more than 100 years, developing breakthrough innovations in areas such as medical imaging, energy generation technology, jet engines, advanced materials and lighting. GE Global Research is headquartered in Niskayuna, New York and has facilities in Bangalore, India; Shanghai, China; and Munich, Germany.

For more information, please click here

Contacts:
GE
Media Relations
Todd Alhart
518-387-7914

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Oxford Instruments announces winners of the 2015 Sir Martin Wood Science Prize for China May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Announcements

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Nanometrics to Present at the B. Riley & Co. 16th Annual Investor Conference May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Energy

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

ISDC To Showcase Northrop Grumman/Caltech Push Toward Space Solar Power April 28th, 2015

Solar/Photovoltaic

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project