Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Technique Could Dramatically Lower Costs of DNA Sequencing

Abstract:
Using computer simulations, researchers at the University of Illinois have demonstrated a strategy for sequencing DNA by driving the molecule back and forth through a nanopore capacitor in a semiconductor chip. The technique could lead to a device that would read human genomes quickly and affordably.

New Technique Could Dramatically Lower Costs of DNA Sequencing

Bethesda , MD | Posted on January 16th, 2008

The ability to sequence a human genome for $1,000 or less (the price most insurance companies are willing to pay) could open a new era in personal medicine, making it possible to precisely diagnose the cause of many diseases and tailor drugs and treatment procedures to the genetic makeup of an individual. "Despite the tremendous interest in using nanopores for sequencing DNA, it was unclear how, exactly, nanopores could be used to read the DNA sequence," said Aleksei Aksimentiev, Ph.D., who led this research effort. "We now describe one such method." Aksimentiev and his collaborators describe the method in a paper published in the journal Nano Letters.

"Through molecular dynamics simulations, we demonstrate that back-and-forth motion of a DNA molecule in a nanopore capacitor 1 nanometer in diameter produces an electrostatic fingerprint that can be used to read the genetic sequence," said Aksimentiev.

In the researchers' simulations, the nanopore capacitor consists of two conducting layers of doped silicon separated by an insulating layer of silicon dioxide. As DNA passes through the nanopore, the molecule's electric field induces sequence-specific electrostatic potentials that can be detected at the top and bottom layers of the capacitor membrane. A semiconductor device capable of reading the electrostatic potentials and decoding the genetic sequence is within the grasp of current technology, Aksimentiev said.

"Nanometer pores in electronic membranes have been manufactured, and the voltage signals resulting from DNA movement through such pores have been recorded." The next big challenge is to minimize noise in the system and reduce the speed of DNA molecules moving through the pore.

This work is detailed in the paper "Detection of DNA sequences using an alternating electric field in a nanopore capacitor." An abstract of this paper is available through PubMed.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract

Related News Press

News and information

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Nanomedicine

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Discoveries

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Announcements

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project