Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Polymeric Nanoparticles for Tumor Vaccines

Abstract:
The quest for an effective antitumor vaccine has received a boost from the results of work aimed at developing a nanoparticle that delivers tumor antigens to the immune system cells that trigger antibody production. The results of this effort, led by Shinsaku Nakagawa, Ph.D., and Naoki Okada, Ph.D., of Osaka University in Japan, were published in the journal Biochemical and Biophysical Research Communications.

Polymeric Nanoparticles for Tumor Vaccines

Bethesda , MD | Posted on January 16th, 2008

Vaccines are complex preparations of proteins and other materials designed to produce maximal immune response to those proteins. One factor that determines a vaccine's potency is the ability of this mixture to trigger a recognition event between the protein antigen and immune system cells known as antigen-presenting cells (APCs). Using the biocompatible polymer poly(y-glutamic acid), the investigators were able to create self-assembling nanoparticles that entrap proteins as they form. The resulting nanoparticles were relatively stable, releasing their protein content over the course of a month. The investigators also demonstrated that they could freeze-dry these nanoparticles and reconstitute them without altering the functionality of the entrapped protein, a desirable property for any vaccine vehicle designed for use outside of major medical centers.

To determine whether these nanoparticles would trigger a useful immune response, the investigators entrapped the protein ovalbumin in the nanoparticles and then immunized three sets of mice with a metastatic ovalbumin-producing mouse melanoma. One set of mice received the nanoparticle, and the other two were immunized with either ovalbumin or a saline solution. Immunization consisted of three injections over the course of 1 week. Eighteen days after the last injection, the investigators examined the lungs of the treated mice, finding that there were virtually no metastatic lesions in the lungs of the nanoparticle-immunized mice. In contrast, mice immunized with either ovalbumin or saline had large numbers of metastatic nodules in their lungs.

Further experiments showed that the nanoparticles were taken up efficiently by APCs. In addition, the nanoparticles were able to traffic out of endosomes and release their protein antigens into the cytoplasm of the APCs, boosting the immune response to the antigen.

This work is detailed in the paper "Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier." An abstract of this paper is available through PubMed.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract

Related News Press

News and information

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Self Assembly

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Nanomedicine

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Discoveries

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE