Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanoparticles Harvest Tumor Biomarkers

Abstract:
The long and challenging effort to find blood-borne markers for cancer and other diseases may soon enter a new realm of success using a new nanoparticle that preferentially and rapidly removes small proteins and other molecules from blood while simultaneously protecting them from degradation. This work, published in the journal Nano Letters, resulted from a cooperative effort between researchers at George Mason University and the CRO-IRCCS National Cancer Institute in Aviano, Italy. Lance Liotta, M.D., Ph.D., of George Mason University led this international team.

Nanoparticles Harvest Tumor Biomarkers

Bethesda , MD | Posted on January 16th, 2008

Researchers attempting to identify disease-related biomarkers in blood face two major problems, each of which the new polymer-based nanoparticles appear to overcome. One issue is that two proteins—albumin and immunoglobulin—account for 90 percent of the molecules in blood, whereas any potential biomarkers are likely to be present at only trace levels. Furthermore, many blood-borne molecules adhere to these two major proteins, so that any effort to remove these prevalent proteins to maximize an analytical signal from the trace substances is likely to also eliminate the potential biomarkers. In addition, many of the potential biomarkers are likely to be proteins, but enzymes present in blood begin degrading these proteins almost immediately after blood is removed from the body.

To solve these problems, the investigators used a copolymer of poly(N-isopropylacrylamide) (NIPAm) and acrylic acid (ACC) to create water-impregnated nanoparticles with pores of well-defined size. Water flows freely into these particles, carrying proteins and other small molecules into the polymer matrix. By controlling the pore size, the researchers were able to create particles that exclude the huge proteins albumin and immunoglobulin while admitting smaller proteins and other molecules. The ACC component acts as a negatively charged "bait" that attracts positively charged proteins, improving the particles' performance.

Extensive tests with these nanoparticles demonstrated that protein capture is both efficient and rapid. Using both individual proteins and diluted human serum, the investigators showed that the particles remove the majority of positively charged small proteins from blood within 15 minutes. Additional tests showed that once entrapped in the particles, the proteins do not degrade. Once sequestration is complete, the particles are easily removed from blood samples via centrifugation. Their contents can then be analyzed using mass spectrometry.

Although these particles were designed to trap positively charged proteins, which predominate in nature, the researchers note that NIPAm can be copolymerized with other bait components to trap negatively charged or hydrophobic molecules, too. These investigators are preparing these nanoparticles, as well as ones that can specifically trap glycoproteins.

This work, which was supported in part by the NCI, is detailed in the paper "Smart hydrogel particles: biomarker harvesting: one-step affinity purification, size exclusion, and protection against degradation." An abstract of this paper is available through PubMed.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract

Related News Press

News and information

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Nanomedicine

New imaging agent provides better picture of the gut July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Discoveries

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Announcements

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE