Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The indecisive insulator

Figure 1: In two dimensions, the electronic energy band in graphene follows a cone-shaped distribution, similar to the behavior of relativistic massless Dirac fermions.
Figure 1: In two dimensions, the electronic energy band in graphene follows a cone-shaped distribution, similar to the behavior of relativistic massless Dirac fermions.

Abstract:
Researchers are applying relativistic quantum theory to explain how graphene could switch from a metal to an insulator

The indecisive insulator

Japan | Posted on January 10th, 2008

Graphene, which consists of single sheets of carbon atoms peeled off graphite, has recently been fabricated for the first time. Graphene has unusual electrical properties that originate from the unconventional manner in which its electrons behave. A team from the University of California, the Paul Scherrer Institute in Switzerland and the RIKEN Discovery Research Institute in Wako are gaining insight into graphene by expanding the quantum theory for relativistic particles1.

Electron transport in solids is usually non-relativistic and governed by the Schrödinger equation. However the electrons in graphene effectively behave like massless relativistic particles, which are described by a Dirac equation. This means that in two dimensions the electronic energy band is cone-shaped (Fig. 1), and gives graphene the potential to switch from a conducting metal to an insulator.

"Electrons are scattered randomly by impurities and defects in a solid," explains project-member Akira Furusaki from RIKEN. "When such scattering happens sufficiently frequently, electrons become localized in a finite region and cannot propagate over a distance. This phenomenon is called Anderson localization."

During Anderson localization, the wavefunction—or probability distribution of different states—of an electron is very narrow in space. If all the electrons in a solid are Anderson localized, the solid is an insulator. In contrast, electrons in a conducting metal are free to move, having wavefunctions extended over the entire system.

Furusaki and co-workers extended an aspect of quantum field theory called the nonlinear sigma model to examine Anderson localizations in graphene. The model is defined whenever electrons move by diffusion, and has been a standard tool to describe transport properties of electrons in disordered solids.

The researchers discovered that when the nonlinear sigma model is used to describe the transport of two-dimensional Dirac electrons in a random electrostatic potential, a topological term is required in the mathematical formulation (at the same time, a German and Russian team reached a similar conclusion independently2).

The topological term arises from Majorana fermions—theoretical particles that are their own antiparticles—originating in the theory of the Anderson localization in graphene. "The presence of a topological term can change low-energy (long-distance) properties of the model drastically and is responsible for metallic transport in graphene," says Furusaki.

In future the researchers hope to generalize their theory to three dimensions. "We also plan to examine other systems such as disordered superconductors," says Furusaki, "in which the transport of low-energy quasiparticles may be highly complex."
Reference

1. Ryu, S., Mudry, C., Obuse, H. & Furusaki, A. Z2 topological term, the global anomaly, and the two-dimensional symplectic symmetry class of Anderson localization. Physical Review Letters 99, 116601 (2007). | article |

2. Ostrovsky, P.M., Gornyi, I.V. & Mirlin, A.D. Quantum criticality and minimal conductivity in graphene with long-range disorder. Physical Review Letters 98, 256801 (2007).

####

About RIKEN
RIKEN is one of Japan’s largest research organisations with institutes and centres in various locations in Japan (see http://www.riken.jp/engn/r-world/link/index.html). RIKEN’s 3000+ researchers publish several hundred research articles in top scientific and technical journals every year across a broad spectrum of disciplines in physics, chemistry, biology, medicine, earth science and in many areas of technology, and the number of articles is growing year on year.

For more information, please click here

Copyright © RIKEN

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Announcements

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Nanobiotix establishes promising preclinical proof-of-concept in Immuno Oncology May 31st, 2016

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Quantum nanoscience

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic