Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > The indecisive insulator

Figure 1: In two dimensions, the electronic energy band in graphene follows a cone-shaped distribution, similar to the behavior of relativistic massless Dirac fermions.
Figure 1: In two dimensions, the electronic energy band in graphene follows a cone-shaped distribution, similar to the behavior of relativistic massless Dirac fermions.

Abstract:
Researchers are applying relativistic quantum theory to explain how graphene could switch from a metal to an insulator

The indecisive insulator

Japan | Posted on January 10th, 2008

Graphene, which consists of single sheets of carbon atoms peeled off graphite, has recently been fabricated for the first time. Graphene has unusual electrical properties that originate from the unconventional manner in which its electrons behave. A team from the University of California, the Paul Scherrer Institute in Switzerland and the RIKEN Discovery Research Institute in Wako are gaining insight into graphene by expanding the quantum theory for relativistic particles1.

Electron transport in solids is usually non-relativistic and governed by the Schrödinger equation. However the electrons in graphene effectively behave like massless relativistic particles, which are described by a Dirac equation. This means that in two dimensions the electronic energy band is cone-shaped (Fig. 1), and gives graphene the potential to switch from a conducting metal to an insulator.

"Electrons are scattered randomly by impurities and defects in a solid," explains project-member Akira Furusaki from RIKEN. "When such scattering happens sufficiently frequently, electrons become localized in a finite region and cannot propagate over a distance. This phenomenon is called Anderson localization."

During Anderson localization, the wavefunction—or probability distribution of different states—of an electron is very narrow in space. If all the electrons in a solid are Anderson localized, the solid is an insulator. In contrast, electrons in a conducting metal are free to move, having wavefunctions extended over the entire system.

Furusaki and co-workers extended an aspect of quantum field theory called the nonlinear sigma model to examine Anderson localizations in graphene. The model is defined whenever electrons move by diffusion, and has been a standard tool to describe transport properties of electrons in disordered solids.

The researchers discovered that when the nonlinear sigma model is used to describe the transport of two-dimensional Dirac electrons in a random electrostatic potential, a topological term is required in the mathematical formulation (at the same time, a German and Russian team reached a similar conclusion independently2).

The topological term arises from Majorana fermions—theoretical particles that are their own antiparticles—originating in the theory of the Anderson localization in graphene. "The presence of a topological term can change low-energy (long-distance) properties of the model drastically and is responsible for metallic transport in graphene," says Furusaki.

In future the researchers hope to generalize their theory to three dimensions. "We also plan to examine other systems such as disordered superconductors," says Furusaki, "in which the transport of low-energy quasiparticles may be highly complex."
Reference

1. Ryu, S., Mudry, C., Obuse, H. & Furusaki, A. Z2 topological term, the global anomaly, and the two-dimensional symplectic symmetry class of Anderson localization. Physical Review Letters 99, 116601 (2007). | article |

2. Ostrovsky, P.M., Gornyi, I.V. & Mirlin, A.D. Quantum criticality and minimal conductivity in graphene with long-range disorder. Physical Review Letters 98, 256801 (2007).

####

About RIKEN
RIKEN is one of Japan’s largest research organisations with institutes and centres in various locations in Japan (see http://www.riken.jp/engn/r-world/link/index.html). RIKEN’s 3000+ researchers publish several hundred research articles in top scientific and technical journals every year across a broad spectrum of disciplines in physics, chemistry, biology, medicine, earth science and in many areas of technology, and the number of articles is growing year on year.

For more information, please click here

Copyright © RIKEN

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Announcements

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Quantum nanoscience

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE