Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Tiny Technology

CREDIT "Microphotonics Group"
CREDIT "Microphotonics Group"

Abstract:
A team of researchers at the University of St. Andrews has developed one of the smallest optical switches ever made.

Tiny Technology

UK | Posted on December 20th, 2007

The technology may eventually be used in small consumer devices that connect every home or office to an optical fibre and supply high data rates, including television on demand

The researchers, based at the School of Physics and Astronomy and led by Professor Thomas Krauss, have used photonic crystal technology to reduce the size of the switch to only a few wavelengths of light. Consequently, the entire switch is only about one tenth of the size of a human hair.

Professor Krauss explained, "The switch is aimed at applications in telecommunications where we foresee its use in routing of optical signals.

"The idea of using fibre in the home or office requires small optical circuits that operate with low power. When these can be mass-produced in a cost-effective way it helps to keep the cost of the products down.

"At the moment, optical switches tend to be millimetres in size. It is difficult to state which is the smallest optical switch ever made - but this is certainly one of them."

The team inspecting one of their devices. (from left) T.F. Krauss, L. O'Faolain, T.P. White and D. Beggs.

By focussing on silicon as the material platform, the photonic devices developed by the group can be mass-produced in a similar way as computer chips for the microelectronics industry, and integrated with electronic circuitry on the same chip.

The group aims to address the increasing need for optical components at all levels of the communications network that carries the ever-increasing flow of data over the internet.

The work is part of the UK Silicon Photonics project, a consortium led by Surrey University, which has just received a funding boost from EPSRC, with 1.4M awarded to St. Andrews.

NOTE TO EDITORS: Professor Thomas Krauss is available for interview on 44 01334 463107.

####

About University of St Andrews
St Andrews is Scotland's first University and the third oldest in the UK. For almost six centuries, we have proudly upheld the tradition of academic excellence, attracting scholars of international repute and students from all over the world.

Today, we continue to offer the latest in teaching and research, all within a superbly picturesque mediaeval setting. Although St Andrews is not a campus University, it has grown and developed with the town and is now comfortably integrated.

Owing to the size of St Andrews, students feel they belong here and enjoy the benefits of studying at a highly residential University where academic and social lives intermingle.

For more information, please click here

Contacts:
Fiona Armstrong
Press Officer
44 01334 462530 / 462529,

Copyright © University of St Andrews

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Chip Technology

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Discoveries

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Announcements

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Photonics/Optics/Lasers

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE