Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Toward improved non-stick surfaces at the flip of a switch

Abstract:
Researchers in New Jersey report development of a new type of non-stick material whose ability to shed liquids like water from a duck's back can be turned on or off simply by flipping an electrical switch. The material, called "nanonails," offers a wide-range of potential applications including contamination-resistant and self-cleaning surfaces, reduced-drag ships, and advanced electrical batteries, they say. Their study is scheduled for the Jan. 1 issue of ACS' Langmuir, a bi-weekly publication.

Toward improved non-stick surfaces at the flip of a switch

Madison, WI | Posted on December 19th, 2007

For years, researchers sought to develop surfaces that repel virtually any liquid. They've created non-stick surfaces that repel water and certain other liquids, but have had little success with repelling common organic liquids such as oils, solvents and detergents. Tom N. Krupenkin and colleagues report that their "nanonails" have all-purpose repellency properties. The nails actually are submicroscopic silicon structures shaped like carpenter's nails that dramatically enhance a surface's repellency. However, the surface becomes highly wettable when electricity is applied, allowing liquid to be sucked between the nails. In laboratory demonstrations, the researchers showed that their electronic non-stick surface works effectively using virtually any liquid.
"Nanonails" also show promise for enhancing chemical microreactions, decreasing flow resistance, and facilitating liquid movement for medical diagnostic applications such as lab-on-a-chip technology, they say. MTS

####

For more information, please click here

Contacts:
Tom Krupenkin, Ph.D.
University of Wisconsin-Madison
Madison, Wisconsin 53706-1572
Phone: 608-890-1948

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

DOWNLOAD PDF

Related News Press

News and information

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Marine/Watercraft

NIST-made 'sun and rain' used to study nanoparticle release from polymers October 5th, 2016

New material to revolutionize water proofing September 12th, 2016

Tracing barnacle's footprint August 19th, 2016

Novel anti-biofilm nano coating developed at Ben-Gurion U.: Offers significant anti-adhesive potential for a variety of medical and industrial applications April 25th, 2016

Discoveries

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Announcements

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Nanoscale view of energy storage January 16th, 2017

One step closer to reality: Devices that convert heat into electricity: Composite material yields 10 times -- or higher -- voltage output January 4th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Researchers produced nitrogen doped bimodal cellular structure activated carbon December 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project