Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Cheaper Drugs Now Closer to Realization with New DropArray Technology

Abstract:
IBN's First Spin-off Company, Curiox Biosystems, to Bring DropArray to Market

Cheaper Drugs Now Closer to Realization with New DropArray Technology

Singapore | Posted on December 17th, 2007

A standard laboratory tool for measuring pharmacological activity of biological substances and performing other related tests may soon be replaced by a new miniaturized bioassay that will be faster, cheaper and more efficient for scientists to use, with new technology developed by Singapore's Institute of Bioengineering and Nanotechnology (IBN).

The new assay, named DropArray, slashes the time needed to run certain lab tests by over 60 per cent and reduces consumable costs by nearly 90 per cent, while maintaining the same level of flexibility and convenience as conventional platforms.

According to IBN Team Leader Dr Namyong Kim, "Our technology has the potential to accelerate life science, drug discovery and clinical research. Using our technology, companies can benefit from huge savings in time and money spent on research and development and this would have a direct impact on the cost of medication and new drugs for the consumer."

IBN's DropArray represents a unique integration of surface chemistry and microfluidics designed to reduce the amount of material and reagent required by up to 1,000 times, while simultaneously cutting the reaction time by up to 10 folds, making it faster and cheaper than standard bioassays.

Each DropArray chip comprises a small (1 inch by 3 inch) flat rectangular patterned glass slide, with hundreds or thousands of hydrophilic glass "wells" surrounded by a hydrophobic coating. These chips can be used for common laboratory processes such as the heterogeneous bioassay, which is typically used by scientists in diagnostic tests to determine how a blood sample interacts with various other substances. The "wells" act as small test tubes in which the reagents are added, mixed and incubated, and a bench-top station automatically completes the rinsing process in heterogeneous bioassay.

IBN's DropArray is able to miniaturize bioassays from 50-100 microliters down to 100 nanoliters, making it possible for researchers to conduct various cell-based tests including cancer stem cell immunoassays that had previously been extremely challenging with conventional technology.

Furthermore, the reduction in the volume of samples and reagents required provides similar advantages for protein-based assays such as ELISA with limited human and animal serum such as Human Leptin and Endostatin assays.

"This DropArray was realized through the efforts of an interdisciplinary team of researchers, which is typical of the project-oriented research at IBN," said Prof Jackie Y. Ying, Executive Director of IBN, one of the 14 research institutes of Singapore's Agency for Science, Technology and Research (A*STAR). Prof. Ying was one of the youngest professors at the Massachusetts Institute of Technology, and has received many awards for her research in nanotechnology. She was elected to the German Academy of Natural Scientists, Leopoldina, in April 2005 as the youngest member of the Academy.

"IBN was established less than 5 years ago with the mission to conduct exciting scientific research with significant commercial impact. Since then, we have filed more than 420 patents, and we are delighted that our entrepreneurial research team of one chemist, one biologist, one biomedical engineer, one mechanical engineer and one chemical engineer has taken less than three years to develop a novel technology platform that would contribute significantly to reducing the cost of drug development and medication. Curiox Biosystems, the company we set up to market this technology, is IBN's first spin-off."

Nanostart AG, the German-based world's leading nanotechnology investment company, has invested in Curiox Biosystems, which will further develop and commercialize the DropArray technology. Curiox will be headed by 2 IBN researchers, Dr. Kim Nam Yong, a Korean and Singapore permanent resident who received his Ph.D. in Chemistry from the Massachusetts Institute of Technology, and Dr. Leck Kwong Joo, a Singaporean who received his Ph.D. in Medical Sciences from the Australian National University.

For Nanostart AG, the investment in Curiox marks its first in Asia, and is of strategic importance. Nanostart is investing in Curiox as the lead investor and is thus assuming an active role with its investment managers in the ongoing development of the company, jointly with Exploit Technologies, the commercialization arm of A*STAR.

"Our new investment holding, Curiox, is our first step into the highly promising Asian market," explained Marco Beckmann, CEO of Nanostart AG. "Singapore has established an outstanding position for itself in Asia in nanotechnology. Through our investment in Curiox, we aim to directly participate in the dynamic growth of this region and to live up to our claim of global leadership. Further investments in Asia will follow."

"We are delighted to learn that Nanostart is planning further activities including a local office in Singapore. It would bring along a significant international network of business contacts, and help other local enterprises in creating high value added jobs based on home-grown, cutting-edge technologies," said Prof. Ying. She will hold a seat on the company's board of directors along with a representative from Nanostart AG.

The U.S. represents Curiox's largest potential market with more than 12,000 suitable academic and government labs, which spent $14.3 billion on lab instruments, consumables and reagents in 2005, and more than 14,000 industrial pharma and biotech labs, which spent $37.4 billion in 2005.

####

About IBN
The Institute of Bioengineering and Nanotechnology (IBN) is a member of the Agency for Science, Technology and Research (A*STAR). Established in March 2003, IBN is headed by its Executive Director, Professor Jackie Y. Ying. The Institute’s mission is to establish a broad knowledge base and conduct innovative research at the interface of bioengineering and nanotechnology. Positioned at the frontiers of engineering, IBN is focused on creating knowledge and cultivating talent to develop technology platforms in the following six areas:
Delivery of Drugs, Proteins and Genes
Cell and Tissue Engineering
Artificial Organs and Implants
Pharmaceuticals Synthesis and Nanobiotechnology
Medical and Biological Devices
Bioimaging and Biosensing

For more information, please click here

Contacts:
Nidyah Sani
Phone: +65 6824 7005
Mobile: 65 9762 9720


Laura Lau (IBN)
DID: 65 6824 7040
Mobile: 65 9695 7521
Email:

Copyright © IBN

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Treatment of Cell Infection by Nanotechnology September 15th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Iranian Scientists Discover Nanotechnology Method to Remove Limitations in Tumor Surgery September 11th, 2014

Iranian Nanotechnology Scientists Produce Polymeric Scaffolds for Tissue Engineering September 11th, 2014

Announcements

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Tools

Advanced Light Source Sets Microscopy Record| Berkeley Lab Researchers Achieve Highest Resolution Ever with X-ray Microscopy September 11th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Development of Algorithm for Accurate Calculation of Average Distance Travelled by Low-Speed Electrons without Energy Loss that Are Sensitive to Surface Structure September 11th, 2014

How skin falls apart: The pathology of autoimmune skin disease is revealed at the nanoscale September 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE