Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Experiments reveal unexpected activity of fuel cell catalysts

A scanning tunneling microscopy (STM) image taken of ceria nanoparticles on a gold surface. Size: 40 x 40 nanometers.
A scanning tunneling microscopy (STM) image taken of ceria nanoparticles on a gold surface. Size: 40 x 40 nanometers.

Abstract:
Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have unveiled important details about a class of catalysts that could help improve the performance of fuel cells. With the goal of producing "clean" hydrogen for fuel cell reactions in mind, the researchers determined why two next-generation catalysts including gold, cerium, titanium, and oxygen nanomaterials exhibit very high activity. Their results will be published online in the December 14, 2007, edition of the journal Science.

Experiments reveal unexpected activity of fuel cell catalysts

UPTON, NY | Posted on December 13th, 2007

Fuel cells combine hydrogen and oxygen without combustion to produce direct electrical power and water. They are attractive as a source of power for transportation applications because of their high energy efficiency, the potential for using a variety of fuel sources, and their zero emissions. However, a major problem facing this technology is that the hydrogen-rich materials feeding the reaction often contain carbon monoxide (CO), which is formed during hydrogen production. Within a fuel cell, CO "poisons" the expensive platinum-based catalysts that convert hydrogen into electricity, deteriorating their efficiency over time and requiring their replacement.

"Fuel cell reactions are very demanding processes that require very pure hydrogen," said Brookhaven chemist Jose Rodriguez. "You need to find some way to eliminate the impurities, and that's where the water-gas shift reaction comes into play."

The "water-gas shift" (WGS) reaction combines CO with water to produce additional hydrogen gas and carbon dioxide. With the assistance of proper catalysts, this process can convert nearly 100 percent of the CO into carbon dioxide. Rodriguez's group, which includes researchers from Brookhaven's chemistry department, the Center for Functional Nanomaterials (CFN), and the Central University of Venezuela, studied two "next-generation" WGS nanoscale catalysts: gold-cerium oxide and gold-titanium oxide.

"These nanomaterials have recently been reported as very efficient catalysts for the WGS reaction," said Brookhaven chemist Jan Hrbek. "This was a surprising finding because neither bulk gold nor bulk ceria and titania are active as catalysts."

To determine how these nanocatalysts work, the research team developed so-called "inverse model catalysts." The WGS catalysts usually consist of gold nanoparticles dispersed on a ceria or titania surface - a small amount of the expensive metal placed on the inexpensive oxide. But to get a better look at the surface interactions, the researchers placed ceria or titania nanoparticles on a pure gold surface.

"For the first time, we established that although pure gold is inert for the WGS reaction, if you put a small amount of ceria or titanium on it, it becomes extremely active," Rodriguez said. "So although these inverse catalysts are just models, they have catalytic activity comparable to, and sometimes better than, the real deal."

Using a technique called x-ray photoelectron spectroscopy at Brookhaven's National Synchrotron Light Source, as well as scanning tunneling microscopy and calculations, the researchers discovered that the catalysts' oxides are the reason for their high activity.

"The oxides have unique properties on the nanoscale and are able to break apart water molecules, which is the most difficult part of the WGS reaction," Hrbek said. Added Brookhaven physicist Ping Liu: "After you dissociate the water, the reaction continues on to eliminate CO. But if you don't have nanosized oxide particles, none of this will work."

The researchers plan to continue their study of these catalysts at the NSLS and CFN in order to further explore the reaction mechanism and optimize its performance.

Funding for this research was provided by the Office of Basic Energy Sciences, within the U.S. Department of Energy's Office of Science.

The CFN is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize, and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Brookhaven, Argonne, Lawrence Berkeley, Oak Ridge, and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit http://nano.energy.gov/.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh

631-344-8350

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project