Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > NEC and NEC Electronics develop new full low-k-Cu interconnect structure

Interconnect achieves significant reduction in active power consumption in LSI Devices

NEC and NEC Electronics develop new full low-k-Cu interconnect structure

Tokyo, Japan | Posted on December 13th, 2007

NEC Corporation and NEC Electronics Corporation have developed a new Silica-Carbon Composite (SCC) film capable of blocking Cu-atom diffusion into the dielectric films of LSI interconnects. Use of the SCC film establishes an ultimate full-low-k (FLK) Cu interconnect structure that realizes a reduction in active power consumption in LSI interconnects. The successful development of this FLK Cu interconnect can be attributed to extensive research and development on molecular nanotechnology manipulating the molecular structure and novel plasma-enhanced deposition technology.

Main features of the newly developed FLK interconnect
(1) The new low-k barrier dielectric SCC film has been developed based on molecular nanotechnology, which has a composite structure of unsaturated C=C molecular bonds and the conventional silica backbone structure to prevent Cu diffusion into the interlayer dielectric (ILD) films. The dielectric constant (k) was decreased to 35% that of conventional barrier dielectrics.
(2) A special stabilization process of the Cu metal surface proved that the SCC film capping the Cu lines maintained excellent insulation reliability, even after reducing the film thickness down to several tens of a nanometer.
(3) All of the parts of the insulating film in the FLK Cu interconnect consisted of low-k films, of which robust Molecular-Pore-Stack (MPS) low-k film (1) with stable sub-nanometer-sized pores was deposited continuously on the SCC film on top of the underlying Cu lines (2).
(4) Parasitic capacitance as a source of active power consumption in the LSI interconnects was reduced by 11% as compared to the reference low-k Cu interconnects without SCC film, and reliability was improved.

The newly developed FLK Cu interconnect has an ultimate structure making it applicable not only to leading-edge 32nm-node CMOS devices, but also to all kinds of conventional CMOS devices to realize low power consumption and high reliability. CMOS LSI devices with FLK Cu interconnects are expected to realize high performance IT/network equipment with very low power consumption, such as broadband wireless terminal devices, high speed and multi-task servers and low power microcomputers for automobile applications.

As a result of device scaling, a rapid increase in parasitic capacitance among closely-spaced multilayer interconnects induces undesirable active power consumption. Therefore, a solution to suppress parasitic capacitance has been long sought after. LSI multi-level Cu interconnects are isolated by two kinds of dielectric film, such as the interlayer dielectric (ILD) films isolating the Cu lines themselves and the barrier dielectric films that directly cover the Cu lines to prevent diffusion of Cu atoms into the ILD films. Extensive research and development has been carried out to establish low-k ILD films such as porous materials. However, it has been difficult for barrier dielectrics to fulfill both the requirements of low k-value and perfect blocking properties because the latter property is usually diminished by reducing the k-value or essentially the film density.

The newly-developed low-k SCC film blocks migration of the Cu atoms, where its blocking mechanism is likely to be the capture of Cu atoms by the unsaturated carbon bonds in the SCC film. The FLK Cu interconnect features a seamless stack of MPS ILD film and SCC barrier dielectrics on the Cu lines, which are desired for low power and high speed signal processing in ubiquitous-network applications. NEC and NEC Electronics will continue research and development toward early commercialization of LSI products with FLK Cu interconnects.

A part of this research was supported by the New Energy and Industrial Technology Development Organization (NEDO) under the MIRAI project (3). The research was presented on December 12 at the International Electron Device Meeting (IEDM) being held in Washington DC.


About NEC Corporation
NEC Corporation is one of the world's leading providers of Internet, broadband network and enterprise business solutions dedicated to meeting the specialized needs of its diverse and global base of customers. NEC delivers tailored solutions in the key fields of computer, networking and electron devices, by integrating its technical strengths in IT and Networks, and by providing advanced semiconductor solutions through NEC Electronics Corporation. The NEC Group employs more than 150,000 people worldwide. For additional information, please visit the NEC home page at:

About NEC Electronics
NEC Electronics Corporation (TSE: 6723) specializes in semiconductor products encompassing advanced technology solutions for the high-end computing and broadband networking markets, system solutions for the mobile handset, PC peripherals, automotive and digital consumer markets, and platform solutions for a wide range of customer applications. NEC Electronics Corporation has 25 subsidiaries worldwide including NEC Electronics America, Inc. ( and NEC Electronics (Europe) GmbH ( For additional information about NEC Electronics worldwide, visit

For more information, please click here

Copyright © NEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Nanotechnology

Nanomachines: Pirouetting in the spotlight September 29th, 2015

A different type of 2-D semiconductor: Berkeley Lab researchers produce first ultrathin sheets of perovskite hybrids September 26th, 2015

Scientists build wrench 1.7 nanometers wide: Tool allows fundamentally new way to control the shape of molecules September 25th, 2015

Tiny carbon-capturing motors may help tackle rising carbon dioxide levels September 24th, 2015

Chip Technology

Crystal clear: Thousand-fold fluorescence enhancement in an all-polymer thin film: Griffith University researchers report breakthrough due to novel and multi-layer Colloidal Photonic Crystal structure October 2nd, 2015

Horizontal magnetic tunneling in a field-effect device integrated on Silicon October 2nd, 2015

New Processes in Modern ReRAM Memory Cells Decoded October 1st, 2015

Designed defects in liquid crystals can guide construction of nanomaterials September 25th, 2015


First circularly polarized light detector on a silicon chip: Promises to expand use of polarized light for drug screening, surveillance, optical communications September 24th, 2015

Nanoelectronics could get a boost from carbon research: The smallest of electronics could one day have the ability to turn on and off on an atomic scale September 17th, 2015

Nanotech expertise earns Virginia Tech a spot in National Science Foundation network: New center's focus will be on earth, environmental nanotechnology September 16th, 2015

UT researchers give nanosheets local magnetic properties September 11th, 2015


Horizontal magnetic tunneling in a field-effect device integrated on Silicon October 2nd, 2015

Industrial Nanotech, Inc. Announces New Office in Arizona to Service the Company's New Regional and National Home Builders in Arizona and Nevada October 2nd, 2015

Production of High Temperature Ceramics with Modified Properties in Iran October 2nd, 2015

ISO Approves 2 Int'l Nanotechnology-Related Standards Proposed by Iran October 2nd, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic