Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NEC and NEC Electronics develop new full low-k-Cu interconnect structure

Abstract:
Interconnect achieves significant reduction in active power consumption in LSI Devices

NEC and NEC Electronics develop new full low-k-Cu interconnect structure

Tokyo, Japan | Posted on December 13th, 2007

NEC Corporation and NEC Electronics Corporation have developed a new Silica-Carbon Composite (SCC) film capable of blocking Cu-atom diffusion into the dielectric films of LSI interconnects. Use of the SCC film establishes an ultimate full-low-k (FLK) Cu interconnect structure that realizes a reduction in active power consumption in LSI interconnects. The successful development of this FLK Cu interconnect can be attributed to extensive research and development on molecular nanotechnology manipulating the molecular structure and novel plasma-enhanced deposition technology.

Main features of the newly developed FLK interconnect
(1) The new low-k barrier dielectric SCC film has been developed based on molecular nanotechnology, which has a composite structure of unsaturated C=C molecular bonds and the conventional silica backbone structure to prevent Cu diffusion into the interlayer dielectric (ILD) films. The dielectric constant (k) was decreased to 35% that of conventional barrier dielectrics.
(2) A special stabilization process of the Cu metal surface proved that the SCC film capping the Cu lines maintained excellent insulation reliability, even after reducing the film thickness down to several tens of a nanometer.
(3) All of the parts of the insulating film in the FLK Cu interconnect consisted of low-k films, of which robust Molecular-Pore-Stack (MPS) low-k film (1) with stable sub-nanometer-sized pores was deposited continuously on the SCC film on top of the underlying Cu lines (2).
(4) Parasitic capacitance as a source of active power consumption in the LSI interconnects was reduced by 11% as compared to the reference low-k Cu interconnects without SCC film, and reliability was improved.

The newly developed FLK Cu interconnect has an ultimate structure making it applicable not only to leading-edge 32nm-node CMOS devices, but also to all kinds of conventional CMOS devices to realize low power consumption and high reliability. CMOS LSI devices with FLK Cu interconnects are expected to realize high performance IT/network equipment with very low power consumption, such as broadband wireless terminal devices, high speed and multi-task servers and low power microcomputers for automobile applications.

As a result of device scaling, a rapid increase in parasitic capacitance among closely-spaced multilayer interconnects induces undesirable active power consumption. Therefore, a solution to suppress parasitic capacitance has been long sought after. LSI multi-level Cu interconnects are isolated by two kinds of dielectric film, such as the interlayer dielectric (ILD) films isolating the Cu lines themselves and the barrier dielectric films that directly cover the Cu lines to prevent diffusion of Cu atoms into the ILD films. Extensive research and development has been carried out to establish low-k ILD films such as porous materials. However, it has been difficult for barrier dielectrics to fulfill both the requirements of low k-value and perfect blocking properties because the latter property is usually diminished by reducing the k-value or essentially the film density.

The newly-developed low-k SCC film blocks migration of the Cu atoms, where its blocking mechanism is likely to be the capture of Cu atoms by the unsaturated carbon bonds in the SCC film. The FLK Cu interconnect features a seamless stack of MPS ILD film and SCC barrier dielectrics on the Cu lines, which are desired for low power and high speed signal processing in ubiquitous-network applications. NEC and NEC Electronics will continue research and development toward early commercialization of LSI products with FLK Cu interconnects.

A part of this research was supported by the New Energy and Industrial Technology Development Organization (NEDO) under the MIRAI project (3). The research was presented on December 12 at the International Electron Device Meeting (IEDM) being held in Washington DC.

####

About NEC Corporation
NEC Corporation is one of the world's leading providers of Internet, broadband network and enterprise business solutions dedicated to meeting the specialized needs of its diverse and global base of customers. NEC delivers tailored solutions in the key fields of computer, networking and electron devices, by integrating its technical strengths in IT and Networks, and by providing advanced semiconductor solutions through NEC Electronics Corporation. The NEC Group employs more than 150,000 people worldwide. For additional information, please visit the NEC home page at: www.nec.com

About NEC Electronics
NEC Electronics Corporation (TSE: 6723) specializes in semiconductor products encompassing advanced technology solutions for the high-end computing and broadband networking markets, system solutions for the mobile handset, PC peripherals, automotive and digital consumer markets, and platform solutions for a wide range of customer applications. NEC Electronics Corporation has 25 subsidiaries worldwide including NEC Electronics America, Inc. (www.am.necel.com) and NEC Electronics (Europe) GmbH (www.eu.necel.com). For additional information about NEC Electronics worldwide, visit www.necel.com.

For more information, please click here

Copyright © NEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Nanotechnology

A fast solidification process makes material crackle February 8th, 2016

Nanodevice, build thyself: Researchers in Germany studied how a multitude of electronic interactions govern the encounter between a molecule called porphine and copper and silver surfaces January 18th, 2016

Nano-walkers take speedy leap forward with first rolling DNA-based motor: Fastest DNA motor holds potential for disease diagnostics December 1st, 2015

Rice makes light-driven nanosubmarines: Speedy single-molecule submersibles are a first November 16th, 2015

Chip Technology

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Nanoelectronics

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Announcements

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic