Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Clemson researcher studies carbon fibers for nuclear reactor safety

Abstract:
Carbon fibers that are only one-10th the size of a human hair but three times stronger than steel may hold up to the intense heat and radiation of next-generation nuclear power generators, providing a safety mechanism. The "Gen IV" power-generating reactors are being designed to provide low-cost electricity, but with a built-in safety mechanism current reactors do not have.

Clemson researcher studies carbon fibers for nuclear reactor safety

CLEMSON, SC | Posted on December 10th, 2007

The Department of Energy (DoE) has awarded Clemson University chemical engineering professor Amod Ogale, deputy director of the Center for Advanced Engineering Fibers and Films (CAEFF), a $450,000 grant to research carbon fibers embedded into a carbon matrix that do not melt in extreme temperatures for potential use in Gen IV power generators. About 20 percent of electricity produced in the United States is from nuclear sources.

"One proposed design of the next generation of nuclear plants will consist of a helium-cooled generator that will operate in the range of 1,200 to 1,800 degrees Fahrenheit," Ogale said. "A critical safety requirement for this reactor is that it can shut down safely in the event of a malfunction where coolant flow is interrupted. Steel alloys currently used internally in reactors melt at the peak temperature of 2,500 degrees Fahrenheit, where carbon-fiber composites do not."

Carbon-fiber composites already are used successfully in jetliner brake systems because of their ability to withstand high temperatures without melting. However, their performance in a nuclear environment is not adequately understood.

Ogale and his team will study the neutron-radiation damage effects on carbon fibers.

His prior research has shown that including carbon nanotubes (large molecules of carbon that are tube-shaped and 30 nanometers in size) in carbon fibers leads to the development of a more uniform texture that improves the properties of the ultra-thin carbon fibers.

In his research, Ogale expects to generate high graphitic crystallinity, a solid-ordered pattern that is evenly distributed so that any changes in fiber properties due to radiation can be minimized.

Irradiation experiments will be conducted in collaboration with researchers at Oak Ridge National Labs. South Carolina State University researchers also will participate in the study.

"This research will lead to a fundamental understanding of how the nanotubes set themselves up to provide radiation-damage tolerance to carbon fibers," said Ogale.

Editors: This material is based upon work supported by DoE under grant number DE-FG02-07ER46364. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DoE.

####

About Clemson University
Today, Clemson is redefining the term “top-tier research university” by combining the best of two models: the scientific and technological horsepower of a major research university and the highly engaged academic and social environment of a small college. With a distinctive governance system that fosters stability in leadership, unique college structures that create an unmatched climate for collaboration, and a driven, competitive spirit that encourages faculty, staff and students to embrace bold, sometimes audacious, goals, Clemson has set its sights on being one of the nation’s top-20 public universities by 2011.

That vision — first outlined by President James F. Barker ’70 and officially adopted by the Board of Trustees in 2001 — has united members of the Clemson Family who understand what it takes to be a top research university and what Clemson’s success will mean for students, for South Carolina and for society.

For more information, please click here

Contacts:
Amod Ogale
(864) 656-5483


WRITER:
Susan Polowczuk
(864) 656-2063

Copyright © Clemson University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Nanotubes/Buckyballs/Fullerenes

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Discoveries

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Announcements

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Bringing graphene speakers to the mobile market (video) September 12th, 2016

Novel nanoscale detection of real-time DNA amplification holds promise for diagnostics: Research team led by Nagoya University develop a label-free method for detecting DNA amplification in real time based on refractive index changes in diffracted light September 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic