Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Clemson researcher studies carbon fibers for nuclear reactor safety

Abstract:
Carbon fibers that are only one-10th the size of a human hair but three times stronger than steel may hold up to the intense heat and radiation of next-generation nuclear power generators, providing a safety mechanism. The "Gen IV" power-generating reactors are being designed to provide low-cost electricity, but with a built-in safety mechanism current reactors do not have.

Clemson researcher studies carbon fibers for nuclear reactor safety

CLEMSON, SC | Posted on December 10th, 2007

The Department of Energy (DoE) has awarded Clemson University chemical engineering professor Amod Ogale, deputy director of the Center for Advanced Engineering Fibers and Films (CAEFF), a $450,000 grant to research carbon fibers embedded into a carbon matrix that do not melt in extreme temperatures for potential use in Gen IV power generators. About 20 percent of electricity produced in the United States is from nuclear sources.

"One proposed design of the next generation of nuclear plants will consist of a helium-cooled generator that will operate in the range of 1,200 to 1,800 degrees Fahrenheit," Ogale said. "A critical safety requirement for this reactor is that it can shut down safely in the event of a malfunction where coolant flow is interrupted. Steel alloys currently used internally in reactors melt at the peak temperature of 2,500 degrees Fahrenheit, where carbon-fiber composites do not."

Carbon-fiber composites already are used successfully in jetliner brake systems because of their ability to withstand high temperatures without melting. However, their performance in a nuclear environment is not adequately understood.

Ogale and his team will study the neutron-radiation damage effects on carbon fibers.

His prior research has shown that including carbon nanotubes (large molecules of carbon that are tube-shaped and 30 nanometers in size) in carbon fibers leads to the development of a more uniform texture that improves the properties of the ultra-thin carbon fibers.

In his research, Ogale expects to generate high graphitic crystallinity, a solid-ordered pattern that is evenly distributed so that any changes in fiber properties due to radiation can be minimized.

Irradiation experiments will be conducted in collaboration with researchers at Oak Ridge National Labs. South Carolina State University researchers also will participate in the study.

"This research will lead to a fundamental understanding of how the nanotubes set themselves up to provide radiation-damage tolerance to carbon fibers," said Ogale.

Editors: This material is based upon work supported by DoE under grant number DE-FG02-07ER46364. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DoE.

####

About Clemson University
Today, Clemson is redefining the term “top-tier research university” by combining the best of two models: the scientific and technological horsepower of a major research university and the highly engaged academic and social environment of a small college. With a distinctive governance system that fosters stability in leadership, unique college structures that create an unmatched climate for collaboration, and a driven, competitive spirit that encourages faculty, staff and students to embrace bold, sometimes audacious, goals, Clemson has set its sights on being one of the nation’s top-20 public universities by 2011.

That vision — first outlined by President James F. Barker ’70 and officially adopted by the Board of Trustees in 2001 — has united members of the Clemson Family who understand what it takes to be a top research university and what Clemson’s success will mean for students, for South Carolina and for society.

For more information, please click here

Contacts:
Amod Ogale
(864) 656-5483


WRITER:
Susan Polowczuk
(864) 656-2063

Copyright © Clemson University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Sensing trouble: A new way to detect hidden damage in bridges, roads: University of Delaware engineers devise new method for monitoring structural health July 8th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Discoveries

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic