Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Explosives at the microscopic scale produce shocking results

Abstract:
U.S. troops blew up enemy bridges with explosives in World War II to slow the advance of supplies or enemy forces.

Explosives at the microscopic scale produce shocking results

LIVERMORE, CA | Posted on December 10th, 2007

In modern times, patrollers use explosives at ski resorts to purposely create avalanches so the runs are safer when skiers arrive.

Other than creating the desired effect (a destroyed bridge or avalanche), the users didn't exactly know the microscopic details and extreme states of matter found within a detonating high explosive.

In fact, most scientists don't know what happens either.

But researchers from Lawrence Livermore National Laboratory and the Massachusetts Institute of Technology have created the first quantum molecular dynamics simulation of a shocked explosive near detonation conditions, to reveal what happens at the microscopic scale.

What they found is quite riveting: The explosive, nitromethane, undergoes a chemical decomposition and a transformation into a semi-metallic state for a limited distance behind the detonation front.

Nitromethane is a more energetic high explosive than TNT, although TNT has a higher velocity of detonation and shattering power against hard targets. Nitromethane is oxygen poor, but when mixed with ammonium nitrate can be extremely lethal, such as in the bombing of the Alfred P. Murrah Federal Building in Oklahoma City.

"Despite the extensive production and use of explosives for more than a century, their basic microscopic properties during detonation haven't been unraveled," said Evan Reed, the lead author of a paper appearing in the Dec. 9 online edition of the journal, Nature Physics. "We've gotten the first glimpse of the properties by performing the first quantum molecular dynamics simulation."

In 2005 alone, 3.2 billion kilograms of explosives were sold in the United States for a wide range of applications, including mining, demolition and military applications.

Nitromethane is burned as a fuel in drag racing autos, but also can be made to detonate, a special kind of burning in which the material undergoes a much faster and far more violent type of chemical transformation. With its single nitrogen dioxide (NO2) group, it is a simple representative version of explosives with more NO2 groups.

Though it is an optically transparent, electrically insulating material, it undergoes a shocking transformation: It turns into an optically reflecting, nearly metallic state for a short time behind the detonation shock wave front.

But further behind the wave front, the material returns to being optically transparent and electrically insulating.

"This is the first observation of this behavior in a molecular dynamics simulation of a shocked material," Reed said. "Ultimately, we may be able to create computer simulations of detonation properties of new, yet-to-be synthesized designer explosives."

Other Livermore researchers include M. Riad Manaa, Laurence Fried, Kurt Glaesemann and J.D. Joannopoulos of MIT.

The work was funded by the Laboratory Directed Research and Development program.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Contacts:
Anne M. Stark
Phone: (925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Military

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NanoTechnology for Defense (NT4D) October 22nd, 2014

Quantum nanoscience

NIST quantum probe enhances electric field measurements October 8th, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE