Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Explosives at the microscopic scale produce shocking results

Abstract:
U.S. troops blew up enemy bridges with explosives in World War II to slow the advance of supplies or enemy forces.

Explosives at the microscopic scale produce shocking results

LIVERMORE, CA | Posted on December 10th, 2007

In modern times, patrollers use explosives at ski resorts to purposely create avalanches so the runs are safer when skiers arrive.

Other than creating the desired effect (a destroyed bridge or avalanche), the users didn't exactly know the microscopic details and extreme states of matter found within a detonating high explosive.

In fact, most scientists don't know what happens either.

But researchers from Lawrence Livermore National Laboratory and the Massachusetts Institute of Technology have created the first quantum molecular dynamics simulation of a shocked explosive near detonation conditions, to reveal what happens at the microscopic scale.

What they found is quite riveting: The explosive, nitromethane, undergoes a chemical decomposition and a transformation into a semi-metallic state for a limited distance behind the detonation front.

Nitromethane is a more energetic high explosive than TNT, although TNT has a higher velocity of detonation and shattering power against hard targets. Nitromethane is oxygen poor, but when mixed with ammonium nitrate can be extremely lethal, such as in the bombing of the Alfred P. Murrah Federal Building in Oklahoma City.

"Despite the extensive production and use of explosives for more than a century, their basic microscopic properties during detonation haven't been unraveled," said Evan Reed, the lead author of a paper appearing in the Dec. 9 online edition of the journal, Nature Physics. "We've gotten the first glimpse of the properties by performing the first quantum molecular dynamics simulation."

In 2005 alone, 3.2 billion kilograms of explosives were sold in the United States for a wide range of applications, including mining, demolition and military applications.

Nitromethane is burned as a fuel in drag racing autos, but also can be made to detonate, a special kind of burning in which the material undergoes a much faster and far more violent type of chemical transformation. With its single nitrogen dioxide (NO2) group, it is a simple representative version of explosives with more NO2 groups.

Though it is an optically transparent, electrically insulating material, it undergoes a shocking transformation: It turns into an optically reflecting, nearly metallic state for a short time behind the detonation shock wave front.

But further behind the wave front, the material returns to being optically transparent and electrically insulating.

"This is the first observation of this behavior in a molecular dynamics simulation of a shocked material," Reed said. "Ultimately, we may be able to create computer simulations of detonation properties of new, yet-to-be synthesized designer explosives."

Other Livermore researchers include M. Riad Manaa, Laurence Fried, Kurt Glaesemann and J.D. Joannopoulos of MIT.

The work was funded by the Laboratory Directed Research and Development program.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Contacts:
Anne M. Stark
Phone: (925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Announcements

Industrial Nanotech, Inc. Announces New OEM Customer January 27th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Military

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

Quantum nanoscience

New pathway to valleytronics January 27th, 2015

Graphene brings quantum effects to electronic circuits January 22nd, 2015

Nano-beaker offers insight into the condensation of atoms January 21st, 2015

Atoms can be in 2 places at the same time: Researchers of the University of Bonn have shown that cesium atoms do not follow well-defined paths January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE