Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > Plasmonics Shines Light on Confining Chemical Reaction

Chemical reactions can be easily squizzed and manipulated into a space with size down to 30nm, smaller than one millionth of table tennis ball. Researchers at Stanford University, California, have recently achieved unprecedented spatial control over growth of semiconductor nanowires and carbon nanotubes taking advantage of novel optical properties of metallic nanoparticles. (published in the most recent issue of Nano Lett.)

Plasmonics Shines Light on Confining Chemical Reaction

Palo Alto, CA | Posted on December 4th, 2007

Metallic nanoparticles, especially noble metals like gold, silver and copper, can support light-induced surface plasmon-polaritons (SPPs), or collective electron oscillations. SPPs are electromagnetic ("light") waves that propagate along metal-dielectric interfaces and are coupled to the free electrons in the metal. When illuminated with an electromagnetic waves matching the surface plasmon, called as surface plasmon resonance (SPR), local electromagentic field at the proximity of metal nanoparticles and absorption of the particles to the light will be dramatically enhanced. Most of the absorbed energy will be subsequently converted to heat through a procedure called as plasmon damping (Landau damping ).

As metal nanostructures are used widely as catalysts in the chemical industry as well, the team, led by Mark L. Brongersma, an assistant professor affiliated with Department of Materials Science and Engineering at Stanford, has envisioned a golden opportunity to couple plasmonics and catalysis seeking a new pathway to control chemical reaction.

To find out, Brongersma and his colleagures put an assemly of gold nanoparticles into a flow of source gas, and illuminated the nanoparticles by a laser with power intensity carefully-controlled. The wavelenght of the laser (532nm) is chosn to be compatible with SPR absorption of the particles. They shown that the growth of silicon and germanium nanowires (NWs) and carbon nanotubes (NTs) can be initiated and confined at nanoscale-sized space and down to single NW or NT level. Neverthess, the growth can be positioned at arbitrarily specififed location moving the laser spot. Surprisingly, the laser power needed to initiate the growth (normally at ~500 degree C) is only at few milliwatt. "The strong, resonantly enhanced absorption by metallic nanostructures enables such efficient local heating that a low power laser pointer provides sufficient power to locally generate hundreds of degrees of temperature change." said Mark L. Brongersma.

As well as performing experiments, Brongersma and his team modelled the photothermal energy-conversion and heat conduction process in detail. The researchers came up with an result that indicates the heat generated by this techinique is highly confined into the illuminated area and the onset of heating or cooling can be finished in a scale of 1 ns (10-10 s ). "That means we are able to grow nanowires or nanotubes directly in devices architecture to make a nanodevices, and would be able to grow those materials in a controlled way monolayer by monlayer ", said Linyou Cao, a graduate student at Stanford and leading author of the paper. Most nanowires and nanotubes are currently grown in a globally heated furnace. Such procedures can damage pre-existing device structures, and hence device fabrication typically requires laborious post-growth processing.

" We anticipate that the versatility and simplicity of the technique will result in its broad adaptation by many researchers and engineers that require a nanoscale heating strategy", told Mark L. Brongersma to, " In general, the successful demonstration of high spatial and temporal control over nanoscale thermal environments inspires new pathways for manipulating a range of important thermally-stimulated processes and the development of novel photothermal devices. "


For more information, please click here

Linyou Cao

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

3DXNano™ ESD Carbon Nanotube 3D Printing Filament - optimized for demanding 3D printing applications in the semi-con and electronics industry October 16th, 2014

Future computers could be built from magnetic 'tornadoes' October 14th, 2014

Australian teams set new records for silicon quantum computing October 12th, 2014


Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

NTU develops ultra-fast charging batteries that last 20 years October 14th, 2014

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

Nano-bearings on the test bench: Fullerene spheres can be used to slide in the nanoworld October 3rd, 2014


Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014


Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014


Physicists build reversible laser tractor beam October 20th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

New VDMA Association "Electronics, Micro and Nano Technologies" founded: Inaugural Meeting in Frankfurt/Main, Germany October 15th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE