Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Plasmonics Shines Light on Confining Chemical Reaction

Abstract:
Chemical reactions can be easily squizzed and manipulated into a space with size down to 30nm, smaller than one millionth of table tennis ball. Researchers at Stanford University, California, have recently achieved unprecedented spatial control over growth of semiconductor nanowires and carbon nanotubes taking advantage of novel optical properties of metallic nanoparticles. (published in the most recent issue of Nano Lett.)

Plasmonics Shines Light on Confining Chemical Reaction

Palo Alto, CA | Posted on December 4th, 2007

Metallic nanoparticles, especially noble metals like gold, silver and copper, can support light-induced surface plasmon-polaritons (SPPs), or collective electron oscillations. SPPs are electromagnetic ("light") waves that propagate along metal-dielectric interfaces and are coupled to the free electrons in the metal. When illuminated with an electromagnetic waves matching the surface plasmon, called as surface plasmon resonance (SPR), local electromagentic field at the proximity of metal nanoparticles and absorption of the particles to the light will be dramatically enhanced. Most of the absorbed energy will be subsequently converted to heat through a procedure called as plasmon damping (Landau damping ).

As metal nanostructures are used widely as catalysts in the chemical industry as well, the team, led by Mark L. Brongersma, an assistant professor affiliated with Department of Materials Science and Engineering at Stanford, has envisioned a golden opportunity to couple plasmonics and catalysis seeking a new pathway to control chemical reaction.

To find out, Brongersma and his colleagures put an assemly of gold nanoparticles into a flow of source gas, and illuminated the nanoparticles by a laser with power intensity carefully-controlled. The wavelenght of the laser (532nm) is chosn to be compatible with SPR absorption of the particles. They shown that the growth of silicon and germanium nanowires (NWs) and carbon nanotubes (NTs) can be initiated and confined at nanoscale-sized space and down to single NW or NT level. Neverthess, the growth can be positioned at arbitrarily specififed location moving the laser spot. Surprisingly, the laser power needed to initiate the growth (normally at ~500 degree C) is only at few milliwatt. "The strong, resonantly enhanced absorption by metallic nanostructures enables such efficient local heating that a low power laser pointer provides sufficient power to locally generate hundreds of degrees of temperature change." said Mark L. Brongersma.

As well as performing experiments, Brongersma and his team modelled the photothermal energy-conversion and heat conduction process in detail. The researchers came up with an result that indicates the heat generated by this techinique is highly confined into the illuminated area and the onset of heating or cooling can be finished in a scale of 1 ns (10-10 s ). "That means we are able to grow nanowires or nanotubes directly in devices architecture to make a nanodevices, and would be able to grow those materials in a controlled way monolayer by monlayer ", said Linyou Cao, a graduate student at Stanford and leading author of the paper. Most nanowires and nanotubes are currently grown in a globally heated furnace. Such procedures can damage pre-existing device structures, and hence device fabrication typically requires laborious post-growth processing.

" We anticipate that the versatility and simplicity of the technique will result in its broad adaptation by many researchers and engineers that require a nanoscale heating strategy", told Mark L. Brongersma to nanotechweb.org, " In general, the successful demonstration of high spatial and temporal control over nanoscale thermal environments inspires new pathways for manipulating a range of important thermally-stimulated processes and the development of novel photothermal devices. "

####

For more information, please click here

Contacts:
Linyou Cao
650-799-8272

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Nanotubes/Buckyballs/Fullerenes

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Discoveries

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Announcements

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

“Cysteine Rose” Wins 2016 Thermo Fisher Scientific Electron Microscopy Image Contest: Thermo Fisher honors Andrea Jacassi of the Italian Institute of Technology for image of cysteine crystals using focused ion beam techniques March 27th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Photonics/Optics/Lasers

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

MIPT physicists predict the existence of unusual optical composites March 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project