Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Plasmonics Shines Light on Confining Chemical Reaction

Abstract:
Chemical reactions can be easily squizzed and manipulated into a space with size down to 30nm, smaller than one millionth of table tennis ball. Researchers at Stanford University, California, have recently achieved unprecedented spatial control over growth of semiconductor nanowires and carbon nanotubes taking advantage of novel optical properties of metallic nanoparticles. (published in the most recent issue of Nano Lett.)

Plasmonics Shines Light on Confining Chemical Reaction

Palo Alto, CA | Posted on December 4th, 2007

Metallic nanoparticles, especially noble metals like gold, silver and copper, can support light-induced surface plasmon-polaritons (SPPs), or collective electron oscillations. SPPs are electromagnetic ("light") waves that propagate along metal-dielectric interfaces and are coupled to the free electrons in the metal. When illuminated with an electromagnetic waves matching the surface plasmon, called as surface plasmon resonance (SPR), local electromagentic field at the proximity of metal nanoparticles and absorption of the particles to the light will be dramatically enhanced. Most of the absorbed energy will be subsequently converted to heat through a procedure called as plasmon damping (Landau damping ).

As metal nanostructures are used widely as catalysts in the chemical industry as well, the team, led by Mark L. Brongersma, an assistant professor affiliated with Department of Materials Science and Engineering at Stanford, has envisioned a golden opportunity to couple plasmonics and catalysis seeking a new pathway to control chemical reaction.

To find out, Brongersma and his colleagures put an assemly of gold nanoparticles into a flow of source gas, and illuminated the nanoparticles by a laser with power intensity carefully-controlled. The wavelenght of the laser (532nm) is chosn to be compatible with SPR absorption of the particles. They shown that the growth of silicon and germanium nanowires (NWs) and carbon nanotubes (NTs) can be initiated and confined at nanoscale-sized space and down to single NW or NT level. Neverthess, the growth can be positioned at arbitrarily specififed location moving the laser spot. Surprisingly, the laser power needed to initiate the growth (normally at ~500 degree C) is only at few milliwatt. "The strong, resonantly enhanced absorption by metallic nanostructures enables such efficient local heating that a low power laser pointer provides sufficient power to locally generate hundreds of degrees of temperature change." said Mark L. Brongersma.

As well as performing experiments, Brongersma and his team modelled the photothermal energy-conversion and heat conduction process in detail. The researchers came up with an result that indicates the heat generated by this techinique is highly confined into the illuminated area and the onset of heating or cooling can be finished in a scale of 1 ns (10-10 s ). "That means we are able to grow nanowires or nanotubes directly in devices architecture to make a nanodevices, and would be able to grow those materials in a controlled way monolayer by monlayer ", said Linyou Cao, a graduate student at Stanford and leading author of the paper. Most nanowires and nanotubes are currently grown in a globally heated furnace. Such procedures can damage pre-existing device structures, and hence device fabrication typically requires laborious post-growth processing.

" We anticipate that the versatility and simplicity of the technique will result in its broad adaptation by many researchers and engineers that require a nanoscale heating strategy", told Mark L. Brongersma to nanotechweb.org, " In general, the successful demonstration of high spatial and temporal control over nanoscale thermal environments inspires new pathways for manipulating a range of important thermally-stimulated processes and the development of novel photothermal devices. "

####

For more information, please click here

Contacts:
Linyou Cao
650-799-8272

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Photonics/Optics/Lasers

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic