Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > Plasmonics Shines Light on Confining Chemical Reaction

Chemical reactions can be easily squizzed and manipulated into a space with size down to 30nm, smaller than one millionth of table tennis ball. Researchers at Stanford University, California, have recently achieved unprecedented spatial control over growth of semiconductor nanowires and carbon nanotubes taking advantage of novel optical properties of metallic nanoparticles. (published in the most recent issue of Nano Lett.)

Plasmonics Shines Light on Confining Chemical Reaction

Palo Alto, CA | Posted on December 4th, 2007

Metallic nanoparticles, especially noble metals like gold, silver and copper, can support light-induced surface plasmon-polaritons (SPPs), or collective electron oscillations. SPPs are electromagnetic ("light") waves that propagate along metal-dielectric interfaces and are coupled to the free electrons in the metal. When illuminated with an electromagnetic waves matching the surface plasmon, called as surface plasmon resonance (SPR), local electromagentic field at the proximity of metal nanoparticles and absorption of the particles to the light will be dramatically enhanced. Most of the absorbed energy will be subsequently converted to heat through a procedure called as plasmon damping (Landau damping ).

As metal nanostructures are used widely as catalysts in the chemical industry as well, the team, led by Mark L. Brongersma, an assistant professor affiliated with Department of Materials Science and Engineering at Stanford, has envisioned a golden opportunity to couple plasmonics and catalysis seeking a new pathway to control chemical reaction.

To find out, Brongersma and his colleagures put an assemly of gold nanoparticles into a flow of source gas, and illuminated the nanoparticles by a laser with power intensity carefully-controlled. The wavelenght of the laser (532nm) is chosn to be compatible with SPR absorption of the particles. They shown that the growth of silicon and germanium nanowires (NWs) and carbon nanotubes (NTs) can be initiated and confined at nanoscale-sized space and down to single NW or NT level. Neverthess, the growth can be positioned at arbitrarily specififed location moving the laser spot. Surprisingly, the laser power needed to initiate the growth (normally at ~500 degree C) is only at few milliwatt. "The strong, resonantly enhanced absorption by metallic nanostructures enables such efficient local heating that a low power laser pointer provides sufficient power to locally generate hundreds of degrees of temperature change." said Mark L. Brongersma.

As well as performing experiments, Brongersma and his team modelled the photothermal energy-conversion and heat conduction process in detail. The researchers came up with an result that indicates the heat generated by this techinique is highly confined into the illuminated area and the onset of heating or cooling can be finished in a scale of 1 ns (10-10 s ). "That means we are able to grow nanowires or nanotubes directly in devices architecture to make a nanodevices, and would be able to grow those materials in a controlled way monolayer by monlayer ", said Linyou Cao, a graduate student at Stanford and leading author of the paper. Most nanowires and nanotubes are currently grown in a globally heated furnace. Such procedures can damage pre-existing device structures, and hence device fabrication typically requires laborious post-growth processing.

" We anticipate that the versatility and simplicity of the technique will result in its broad adaptation by many researchers and engineers that require a nanoscale heating strategy", told Mark L. Brongersma to, " In general, the successful demonstration of high spatial and temporal control over nanoscale thermal environments inspires new pathways for manipulating a range of important thermally-stimulated processes and the development of novel photothermal devices. "


For more information, please click here

Linyou Cao

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

'Exotic' material is like a switch when super thin April 18th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014


Effects of Carbon Nanotubes Studied on Pregnant Mothers April 12th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Scientists Succeed in Simultaneous Determination of Acetaminophen, Codeine in Drug Samples April 9th, 2014

Rebar technique strengthens case for graphene: Rice University lab makes hybrid nanotube-graphene material that promises to simplify manufacturing April 7th, 2014


Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014


Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014


High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Near-field Nanophotonics Workshop in Boston April 14th, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE