Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 3-D TV in the future made possible by artificial ‘wormholes’

Figure: An electromagnetic wormhole can be in theory be built around a cylindrical body using metamaterials. On left, a ray tracing simulation how rays pass a wormhole device. Note that the cylindrical body is shown in the figure but the metamaterial coating is not. On right, figure how a wormhole would appear when the other side of the wormhole is above an infinite chess board below blue sky. The figure represents a very short wormhole and is quite similar to the image of a mirror ball on a chess board (illustrated by Kathryn Andersen).
Figure: An electromagnetic wormhole can be in theory be built around a cylindrical body using metamaterials. On left, a ray tracing simulation how rays pass a wormhole device. Note that the cylindrical body is shown in the figure but the metamaterial coating is not. On right, figure how a wormhole would appear when the other side of the wormhole is above an infinite chess board below blue sky. The figure represents a very short wormhole and is quite similar to the image of a mirror ball on a chess board (illustrated by Kathryn Andersen).

Abstract:
International mathematicians create wormhole construction model

3-D TV in the future made possible by artificial ‘wormholes’

Helsinki, Finland | Posted on November 26th, 2007

Artificial ‘wormholes' can make construction of a three-dimensional TV screen possible. In such a device the ends of the wormholes are similar to pixels, which could be used in generating a three-dimensional image. An international group of mathematicians have created a model for constructing a wormhole.

Matti Lassas, Professor in Mathematics, who works in the Academy of Finland's Centre of Excellence in Inverse Problems at Helsinki University of Technology, is part of the research team. The team's method has been published in Physical Review Letters.

A wormhole is a concept used in the theory of relativity that describes shortcuts between two points running outside ordinary space. The term ‘wormhole' comes from a playful assertion that a worm on an apple will get from one side to the other faster by burrowing through it than by crawling over the surface.

Previously, this same group of mathematicians studied the invisibility cloak theory. The invisibility cloak theory involves sheathing an object with an exotic material so that the light striking the sheathed object moves around it, thus making the object appear to be invisible when viewed from a distance.

The new proposal for the construction of wormholes corresponds with cloaking a pipe to make it invisible. In such a case, the front and back ends of the pipe would ostensibly be connected by an invisible tunnel. This artificial wormhole could be thought of in the same terms as the sleeve of Harry Potter's invisibility cloak, through which objects could be passed from one end to the other without being seen.

Wormholes can be built using metamaterials

The new materials required to construct invisibility cloaks and artificial wormholes, called ‘metamaterials' are currently the subject of active research. At present, they can, in practice, be constructed for only very limited applications within the range of visible light. A metamaterial designed for use in a microwave invisibility cloak was produced in 2006 at Duke University in the United States by a research team under the direction of Professor David Smith.

Similar materials are suitable for constructing artificial wormholes at microwave frequencies. The construction of a three-dimensional TV would require producing similar materials that work at visible light wavelengths, which, in turn, would require highly advanced nanotechnology. In the near future, artificial wormhole applications will be used in radar technologies and medical imaging.

For example, in MRI (Magnetic Resonance Imaging), which is used by hospitals for the imaging of patients, an artificial wormhole could be used as a shielding tunnel, through which instruments could be passed to the area being imaged without causing interference in the imaging itself.

Professor Matti Lassas' partners in the development of artificial wormholes are Professors Allan Greenleaf of the University of Rochester, Yaroslav Kurylev of University College London and Gunther Uhlmann of the University of Washington.

Sources:
1. A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Physical Review Letters 99, 183901
2. A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Full-wave invisibility of active devices at all frequencies. Communications in Mathematical Physics 275 (2007), 749-789.
3. D. Schurig et al. Metamaterial electromagnetic cloak at microwave frequencies, Science 10 November 2006: Vol. 314. no. 5801, pp. 977- 980
4. Light wormholes could wire space invisibly, Nature 450, 330-331 (2007), Published online 14 November 2007

More information and photos:
http://www.rni.helsinki.fi/~mjl/invisibility_publications.html
-Professor Matti Lassas, Helsinki University of Technology, Institute of Mathematics, tel. +358 9 4513 069 or +358 50 567 4417, email: , http://www.math.hut.fi/~mjlassas

####

For more information, please click here

Contacts:
Academy of Finland Communications
Communications Specialist Leena Vähäkylä
tel. +358 9 7748 8327


Hannu Nokso-Koivisto

Copyright © Academy of Finland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Announcements

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Military

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Human Interest/Art

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

Call for NanoArt and Art-Science-Technology Papers June 9th, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project