Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticle Images and Treats Cancer, Reports on Drug Delivery

Abstract:
Using a quantum dot plus an aptamer that doubles as a tether for the anticancer drug doxorubicin, a team of investigators at the Massachusetts Institute of Technology (MIT)-Harvard Center of Cancer Nanotechnology Excellence has developed a multifunctional nanoparticle that not only treats cancer but also images those tumors that have received drug therapy. The researchers report their work in the journal Nano Letters.

Nanoparticle Images and Treats Cancer, Reports on Drug Delivery

Bethesda , MD | Posted on November 7th, 2007

Omid Farokhzad, M.D., Harvard University, and Robert Langer, Ph.D., MIT, led the team of investigators that developed this multifunctional construct. The researchers built this construct by first coating a quantum dot with an RNA aptamer designed to recognize and bind tightly to prostate specific membrane antigen (PMSA), a surface marker found on prostate tumors. They then incubated this coated quantum dot with doxorubicin, which integrates, or intercalates, itself within the highly folded structure of the aptamer. The investigators showed that doxorubicin intercalation had no effect on the ability of the aptamer to bind to PMSA.

Quantum dots are well known for their ability to emit light of well-defined color. In this experiment, the investigators chose a quantum dot with light in the range of 470 to 530 nanometers (nm). Doxorubicin, aside from being a potent anticancer agent, also absorbs blue light efficiently, with maximal absorption at a wavelength of 480 nm, and then emits light that spans the green-to-orange portion (520-640 nm) of the visible light spectrum.

When the quantum dot and a doxorubicin molecule are close to one another, as they are in this construct, the two optically active systems interfere with one another, greatly suppressing any light emission from either of them. Indeed, when the investigators incubated the quantum dot-aptamer-doxorubicin construct with PMSA-expressing prostate cancer cells, they were able to detect only minimal light emission. However, 90 minutes later, the investigators detected bright optical signals from both the quantum dot and doxorubicin, resulting from the fact that the construct had released doxorubicin into the treated cells.

This work, which was funded by the NCI's Alliance for Nanotechnology in Cancer, is detailed in the paper "Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer." Investigators at the Gwangju Institute of Science and Technology in South Korea also participated in this study. This paper was published online in advance of print publication. An abstract of this paper is available through PubMed.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580
E-mail:

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Discoveries

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Announcements

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Quantum Dots/Rods

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project