Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Remote Magnetic Field Triggers Nanoparticle Drug Release

Abstract:
Magnetic nanoparticles heated by a remote magnetic field have the potential to release multiple anticancer drugs on demand at the site of a tumor, according to a study published in the journal Advanced Materials. Moreover, say the investigators who conducted this research, these same nanoparticles can do double duty as tumor imaging agents.

Remote Magnetic Field Triggers Nanoparticle Drug Release

Bethesda , MD | Posted on November 7th, 2007

Two investigators from the Alliance for Nanotechnology in Cancer—Sangeeta Bhatia, Ph.D., Massachusetts Institute of Technology, and Erkki Ruoslahti, M.D., Ph.D., Burnham Institute—led this research effort, which has the ultimate goal of developing a targeted, multifunctional nanoparticle capable of providing time-tailored drug release into tumors. To create such a platform, the investigators started with dextran-coated iron oxide nanoparticles similar to the ones now under development as magnetic resonance imaging contrast agents. When stimulated by an oscillating magnetic field, these nanoparticles absorb energy and become warm, a property that the researchers capitalized on to create triggered drug release.

To these particles the researchers added a short piece of DNA to act as a tether for one or more anticancer drugs linked to pieces of DNA complementary to the particle-bound tether. At body temperature, the complementary strands of DNA form the famous double helix, creating a stable link between drug molecule and nanoparticle. But when the nanoparticle becomes warm as a result of an applied oscillating magnetic field, the bonds holding the two strands of DNA together become progressively weaker until the local temperature hits a critical value, at which point the double helix unwinds and the drug molecule diffuses away from the nanoparticle. The researchers also showed that when they applied the magnetic field in pulses of 5 minutes duration every 40 minutes, drug release occured in bursts, too.

Since this "melting temperature" depends on the length of the double helix, the investigators reasoned that they could use tethers of different lengths to produce one nanoparticle capable of releasing two or more drugs in sequence. Indeed, when the researchers attached two different model drug compounds to the nanoparticle using tethers of two different lengths, they were able to trigger release of the drug attached via the shorter tether and follow that with release of the second drug, attached with the longer tether, by increasing the power of the oscillating magnetic field.

This work, which was funded by the NCI's Alliance for Nanotechnology in Cancer, is detailed in the paper "Remotely triggered release from magnetic nanoparticles." Investigators from the University of California, San Diego, also participated in this study. This paper was published online in advance of print publication. An abstract of this paper is not yet available.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:


National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580
E-mail:

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Discoveries

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Announcements

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic