Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A Giant Step toward Infinitesimal Machinery

Abstract:
What are the ultimate limits to miniaturization? How small can machinery--with internal workings that move, turn, and vibrate--be produced? What is the smallest scale on which computers can be built? With uncanny and characteristic insight, these are questions that the legendary Caltech physicist Richard Feynman asked himself in the period leading up to a famous 1959 lecture, the first on a topic now called nanotechnology. In a newly announced global Alliance for Nanosystems VLSI (very-large-scale integration), researchers at Caltech's Kavli Nanoscience Institute (KNI) in Pasadena, California, and at the Laboratoire d'Electronique et de Technologie de l'Information-Micro- and Nano-Technologies (CEA/LETI-MINATEC) in Grenoble, France, are working together to take the pursuit of this vision to an entirely new level.

A Giant Step toward Infinitesimal Machinery

PASADENA, CA | Posted on November 6th, 2007

For about three decades after Feynman's lecture, scientists paid little heed to what was apparently viewed as his fanciful dreams in this regard. But more recently, particularly in the past two decades, the field of nanotechnology has been solidly established. Underlying this is an immense amount of careful research, carried out in laboratories worldwide-work that has been realized one advance at a time.

To date, almost all of these pioneering investigations have focused upon solitary components and individual physical effects at the nanoscale. (One nanometer is a billionth of a meter, about ten times the size of a hydrogen atom and a million times smaller than the period at the end of this sentence.) These components hold great promise as the fundamental building blocks of complex future nanosystems, that is, as the ultraminiature machines and computers of Feynman's dreams. But, so far, very little work has actually been carried out to assemble these individual elements into complex architectures.

The Alliance for Nanosystems VLSI (NanoVLSI) is an unprecedented partnership founded to break this impasse. It is an international collaboration between researchers in nanoscience at Caltech and in microsystems science and engineering at CEA/LETI-MINATEC, one of the world's premier, state-of-the-art microelectronics research foundries.

Michael Roukes, professor of physics, applied physics, and bioengineering at Caltech, who was the founding director of Caltech's KNI, has spearheaded the initiative from the academic side. "There is a lot of hype about 'nano' being the solution to many different problems," says Roukes. "It's time for us to start delivering, but to do that we have to think about how to assemble and produce complex systems containing thousands of devices all singing in harmony."

Why complex systems? Huge programs, with millions of lines of code, make up the operating software for today's laptop computers. These must run on microelectronic chips that now integrate several hundred million transistors to achieve their immense computational power. Nanotechnology has the potential of carrying this kind of complexity into entirely new realms, going beyond electronic computation to include capabilities, for example, for detection of very small amounts of chemical and biological molecules, or for measurements on individual living cells within complex microfluidic systems, to name just a few. The first generation of these new chemical processors-on-a-chip is still quite simple compared to their ultimate potential. But already they are spawning new tools for research in the life sciences and medicine and new applications in clinical diagnosis.

A systems approach to nanotechnology is required to ramp up the complexity of these systems-on-a-chip. But achieving this requires access to the kind of multibillion-dollar fabrication capabilities used to build today's microprocessor chips. In such environments, standardized processes are the rule without exception. Experimentation with unconventional materials and techniques is strenuously avoided, since cutting-edge processes are highly susceptible to contamination. Extremely high quality at these foundries must be preserved to maintain production yield. But innovation must occur somewhere. For three decades, CEA/LETI-MINATEC has been fulfilling a critical role, pioneering the introduction of novel processes into state-of-the-art protocols used to produce VLSI microelectronic systems en masse. Within this new alliance, CEA/LETI-MINATEC researchers are now turning their attention to new challenges at the nanoscale. "The Alliance for Nanosystems VLSI is a perfect illustration of the potential for innovation generated by the meeting of science and technology," says Dr. Laurent Malier, the director of CEA/LETI-MINATEC. "I am excited to see Caltech and CEA/LETI-MINATEC share this ambition."

Those today who are working to advance nanoscale research and technology still find much inspiration in Feynman's early insights. He saw no fundamental reasons barring the assembly of machines and computers down to the smallest possible dimensions, namely, that of nature's basic building blocks-atoms and molecules. Step-by-step, with the help of partnerships like NanoVLSI, nanotechnology is approaching this dream.

For more information about the Alliance for Nanosystems VLSI, visit http://www.nanovlsi.org . For KNI, visit http://kni.caltech.edu , and for CEA/LETI-MINATEC, http://www-leti.cea.fr .

####

For more information, please click here

Contacts:
Jill Perry
(626) 395-3226

Copyright © Caltech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Machines

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Alliances/Partnerships/Distributorships

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project